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Motivation

• develop a general framework to model the term structure of interest rates, price bonds

and derivative products

• general decision between the

(i) arbitrage approach with exogenously given interest rate dynamics and the

(ii) equilibrium approach that determines them endogenously

• Cox-Ingersoll-Ross (CIR) adopt an equilibrium approach to endogenously determine the

risk-free rate
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Outline

I) outline the CIR general production economy framework

II) introduce a one-factor representation of the model economy

III) determine the optimal consumption strategy in the one-factor model

IV) derive the equilibrium risk-free rate

V) develop the dynamics of the risk-free rate

VI) price contingent claims in the one-factor model

VII) compare the equilibrium and the arbitrage approach

The Cox-Ingersoll-Ross Model - Matthias Thul, Ally Quan Zhang 4



I) The general CIR Production Economy

-

Model Assumptions

1) “consumption good”:

• single consumption good that cannot be stored and has to be either consumed or

invested

• serves as both, the input and the output of the production process

• all values are measure in units of this good
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2) “production opportunities”:

• n different risky technologies

• transformation process of production opportunity i is

dηi(x, t)

ηi(x, t)
= µi(x, t)dt+ σi(x, t)dzi i = 1, . . . , n

where µi and σi are the exogenous instantaneous drift and diffusion, x is the vector

of state variables and dzi is the increment of a Wiener process

• the single good is both the input and the output of the production process

• assume that µi and σi fulfil conditions s.t. the above SDE is well-defined and has

a unique solution

• “constant returns to scale”: the yield is independent of the invested volume due to

the linearity of the SDE

• covariance (σidzi) (σjdzj) = σi,jdt

• there are no limitations regarding the amount that can be invested into the production
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3) “state variables”:

• k factors representing the state of the technology

• the state variable i follows the process

dxi = ai(x, t)dt+ bi(x, t)dζi i = 1, . . . , k

where ai and bi are the local drift and diffusion functions

• covariance (bidζi) (bjdζj) = bi,jdt, (σidzi) (bjdζj) = φi,jdt

• the state vector x has to represent all necessary information in aggregate form

4) “market”:

• continuous trading in frictionless market at equilibrium prices

• market participants are price-takers
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5) “individuals”:

• identical individuals w.r.t. initial capital endowment, preferences and expectations

• the stochastic dynamics and current state of the economy are public knowledge

• at each point in time t, choose their instantaneous consumption Ct and portfolio

weights ωi, i = 1, . . . , n for the n production opportunities s.t.
∑n

i=1 ωi = 1

and ωi ≥ 0

• maximise expected “lifetime utility” subject to the budget constraint

max
Cs,ωi,s,∀s,i

{
E

[∫ T

t

U(Cs, s)ds

∣∣∣∣∣Ft
]}

where T is their planning horizon
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6) “utility functions”:

• strictly increasing, concave, twice differentiable von Neumann-Morgenstern utility

function with constant relative risk-aversion (RRA)

U(Ct, t) = e
−ρt
[
Cγ
t − 1

γ

]
where γ is one minus the coefficient of RRA

1− γ := −C
UCC

UC
> 0

• U(Ct, t) is an “isoelastic utility function”

• “time separability”: time preferences enter the utility only via the pre-factor e−ρt

where ρ > 0 is the time preference factor

• the relative proportion of risky investment from total wealth W is constant
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7) “risk-free rate”:

• the instantaneous risk-free rate rt is endogenously determined in equilibrium

• applies to all individuals and for both, borrowing and lending

• “shadow” riskless rate at which individuals are indifferent between borrowing and

lending and choose zero transaction volume⇒ zero net supply in the whole economy

8) “contingent claims”:

• there exists a market for derivative instruments that have payoffs in units of the

consumption good (e.g. bonds, futures, options)

• derivatives are in zero net supply

• the value P (Wt, x, t) could be a function of the aggregate wealth, the state vector

and time

• equilibrium prices are independent of aggregate wealth due to the assumption of a

constant RRA utility function (except if the payoff is a function of Wt)
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Representative Individual

• the homogeneity assumptions allow to apply Rubinstein’s aggregation theorem

• equilibrium prices can be determined assuming a representative individual (RI) who

maximises expected utility under his budget constraint

• the RI invests the fraction of wealth that he does not consume into production due to

zero net supply of the risk-free instrument and the contingent claims

• the dynamic budget equation is

dWt = Wt

n∑
i

ωiµidt− Ctdt+Wt

n∑
i

ωiσidzi
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II) A One-Factor Model Economy

• one production opportunity (n = 1) and one state variable (k = 1)

dη(xt, t)

η(xt, t)
= µ(xt, t)dt+ σ(xt, t)dzt

dxt = a(xt, t)dt+ b(xt, t)dζt

where (σdzt) (bdζt) = φdt

• the RI’s optimization problem becomes

max
Cs,∀s

{
E

[∫ T

t

U(Cs, s)ds

∣∣∣∣∣Ft
]}

subject to the dynamic budget equation

dWt = (Wtµ(xt, t)− Ct)dt+Wtσ(xt, t)dzt
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III) Optimal Consumption Strategy in the One-Factor Model

• define the indirect utility function J(Wt, xt, t) by

J(Wt, xt, t) := max
Cs,∀s

{
E

[∫ T

t

U(Cs, s)ds

∣∣∣∣∣Ft
]}

• according to Bellman’s Principle of Optimality, optimal strategies are time consistent

J(Wt, xt, t) = max
Cs,∀s

{
E

[∫ t+dt

t

U(Cs, s)ds

+ max
Cs,∀s

{
E

[∫ T

t+dt

U(Cs, s)ds

∣∣∣∣∣Ft+dt
]}∣∣∣∣∣Ft

]}

= max
Cs,∀s

{
E

[∫ t+dt

t

U(Cs, s)ds+ J(Wt+dt, xt+dt, t+ dt)

∣∣∣∣∣Ft
]}
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• assuming that we can apply Itô’s lemma, J(Wt+dt, xt+dt, t+ dt) can computed as

J(Wt+dt, xt+dt, t+ dt) ≈ J(Wt, xt, t) +
∂J

∂Wt

dWt +
∂J

∂xt
dxt +

∂J

∂t
dt

+
1

2

∂2J

∂W 2
t

(dWt)
2

+
1

2

∂2J

∂x2
t

(dxt)
2

+
∂2J

∂Wt∂xt
dWtdxt

= J(Wt, xt, t) +
∂J

∂Wt

(Wtµ− Ct)dt+
∂J

∂Wt

Wtσdzt

+
∂J

∂xt
adt+

∂J

∂xt
bdζt +

∂J

∂t
dt+

1

2

∂2J

∂W 2
t

W
2
t σ

2
dt

+
1

2

∂2J

∂x2
t

b
2
dt+

∂2J

∂Wt∂xt
Wtφdt

• note that the Wiener processes z and ζ are martingales and thus their changes have

zero expected value
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• plugging this result back into the definition of the indirect utility function results the

Hamilton-Jacobi-Bellman (HJB) equation

0 = max
Ct

{
U(Ct, t) +

∂J

∂Wt

(Wtµ− Ct) +
∂J

∂xt
a+

∂J

∂t

+
1

2

∂2J

∂W 2
t

W
2
t σ

2
+

1

2

∂2J

∂x2
t

b
2

+
∂2J

∂Wt∂xt
Wtφ

}

where J(W,x, t) and dt were cancelled out

• using the Dynkin operator L to simplify the notation yields

0 = max
Ct
{U(Ct, t) + LJ(Wt, xt, t)}
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• the optimization problem can be solved in three steps:

1) determine the optimal consumption level C∗t (J) depending on the indirect utility

function J

2) recover J by solving the PDE that is obtained by substituting the optimal

consumption C∗t (J) into the Bellman equation

3) solve for the optimal consumption level C∗t by substituting the indirect utility

function into C∗t (J)
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Step 1: Determine C∗t (J)

• let 0 = maxCt {Ψ(Ct)} s.t. Ct ≥ 0, then

Ψ(Ct) = U(Ct, t) +
∂J

∂Wt

(Wtµ− Ct) +
∂J

∂xt
a+

∂J

∂t

+
1

2

∂2J

∂W 2
t

W
2
t σ

2
+

1

2

∂2J

∂x2
t

b
2

+
∂2J

∂Wt∂xt
Wtφ

• the Kuhn-Tucker first order conditions (FOC) for Ct are

∂Ψ

∂Ct
=

∂U

∂Ct
−

∂J

∂Wt

≤ 0

Ct
∂Ψ

∂Ct
= Ct

∂U

∂Ct
− Ct

∂J

∂Wt

= 0
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• except for the trivial solution Ct = 0, the optimal consumption is chosen such that

marginal utility of consumption equals to the marginal utility of future wealth

∂U

∂Ct
=

∂J

∂Wt

• the FOC are not only necessary but also sufficient due to the strict concavity of the

utility function U

• given the concrete utility function, the optimal consumption rate C∗(J) can be

determined

U(Ct, t) = e
−ρt
[
Cγ
t − 1

γ

]
⇒

∂U

∂Ct
= e

−ρt (
C
∗
t

)γ−1

⇒ C
∗
t (J) =

(
e
ρt ∂J

∂Wt

) 1
γ−1
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Step 2: Solve for J

• substituting back into the HJB equation and grouping similar terms yields a non linear

PDE for J that can in general not be solved explicitly

• for isolastic utility functions, the indirect utility function takes the form

J(Wt, xt, t) = f(xt, t)U(Wt, t) + g(xt, t)

• logarithmic utility is a limiting case of the isoelastic utility when γ → 0 or equivalently

RRA→ 1

lim
γ→0

e
−ρt
[
Cγ
t − 1

γ

]
= e

−ρt
ln(Ct)

• in this special case, f(x, t) is independent of wealth Wt a function of time t only

f(xt, t) = f(t) =
1− e−ρ(T−t)

ρ
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Step 3: Solve for C∗t

• differentiating J(Wt, xt, t) w.r.t. Wt yields

∂

∂Wt

[f(t)U(Wt, t) + g(xt, t)] = f(t)
∂U

∂Wt

=
1− e−ρ(T−t)

ρWt

• using the FOC allows to solve for C∗t

∂U

∂C∗t
=

∂J

∂Wt

⇔ C
∗
t =

Wtρ

1− e−ρ(T−t)

• under logarithmic utility C∗t depends on the current wealth Wt, the time preference

factor ρ and the planning horizon (T − t) only

• the optimal consumption C∗t is independent of the function g(xt, t) and thus of the

production opportunities in the economy
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IV) Equilibrium Risk-free Rate in the One-Factor Model

• since the risk-free instrument is in zero net supply, it is not being held by the

representative investor

• determine the risk-free rate endogenously such that the investor is not better off by

trading in the money market, i.e. he is indifferent between an investment in the

production opportunity and the risk-free instrument

• denote by ωη ≥ 0 the proportion of wealth that is invested in the production

opportunity, then (1− ωη)Wt is the amount invested in the risk-free instrument

• the dynamic budget equation is

dWt = (ωηWtµ(xt, t) + (1− ωη)Wtrt − Ct)dt+ ωηWtσ(xt, t)dzt

= (ωηWt (µ(xt, t)− rt) +Wtrt − Ct)dt+ ωηWtσ(xt, t)dzt
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• the new optimization problem is 0 = maxCt,ωη {Ψ(Ct, ωη)} s.t. Ct ≥ 0, ωη ≥ 0

with

Ψ(Ct, ωη) = U(Ct, t) +
∂J

∂Wt

(ωηWt(µ− rt) +Wtrt − Ct) +
∂J

∂xt
a+

∂J

∂t

+
1

2

∂2J

∂W 2
t

ω
2
ηW

2
t σ

2
+

1

2

∂2J

∂x2
t

b
2

+
∂2J

∂Wt∂xt
ωηWtφ

• the FOC for Ct do not change and the FOC for ωη are

∂Ψ

∂ωη
=

∂J

∂Wt

Wt(µ− rt) +
∂2J

∂W 2
t

ωηW
2
t σ

2
+

∂2J

∂Wt∂xt
Wtφ ≤ 0

ωη
∂Ψ

∂ωη
=

∂J

∂Wt

ωηWt(µ− rt) +
∂2J

∂W 2
t

ω
2
ηW

2
t σ

2
+

∂2J

∂Wt∂xt
ωηWtφ = 0

• again, the FOC are both necessary and sufficient
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• we want to find the optimum conditional on the investor only consuming or investing

in the production opportunity but without holding the risk-free asset

• solving the second FOC for rt and setting ωη = 1 yields

rt = µ+
∂2J/∂W 2

t

∂J/∂Wt

Wtσ
2

+
∂2J/∂Wt∂xt

∂J/∂Wt

φ

• the equilibrium interest rate rt depends on

(i) the instantaneous mean return µ(x, t) of the optimally invested wealth

(ii) a term reflecting the uncertainty about the returns of the production opportunity

(iii) a term reflecting the uncertainty about the state of the technology
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• note that by definition
∂2J/∂W 2

t

∂J/∂Wt

Wt = γ − 1

and thus

rt = µ+ (γ − 1)σ
2

+
∂2J/∂Wt∂xt

∂J/∂Wt

φ

• for the special case of logarithmic utility (γ = 0), the indirect utility function becomes

J(Wt, xt, t) = f(t) ln(Wt) + g(xt, t) ⇒
∂2J

∂Wt∂xt
= 0

and we get

rt = µ(x, t)− σ2
(x, t)

• under logarithmic utility, the interest rate only depends on the stochastic dynamics of

the production opportunity

• rt is independent of the future production risk arising from the state variable x (i.e.

a(x, t) and b(x, t))
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V) Equilibrium Dynamics of the Risk-free Rate

-

Model Assumptions

1) “factor dynamics”:

• the drift and diffusion coefficients or the state variable are a(xt, t) = a0 + a1xt

and b(xt, t) = b0
√
xt, i.e.

dxt = (a0 + a1xt)dt+ b0
√
xtdζt

where a0, a1 and b0 are constants, a0 ≥ 0 and (dzt) (dζt) = ρdt

• for a0 > 0 and a1 < 0, xt is a non-negative mean-reverting random variable

• note that (dxt)
2

= b2
0xtdt
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2) “production dynamics”:

• the means and variances of the rates of return of the production process are

proportional to xt, i.e. µ(xt, t) = µ̂xt and σ(xt, t) = σ̂
√
xt

dηt

ηt
= µ̂xtdt+ σ̂

√
xtdzt

• given a fixed xt = x̄ this yield a geometric Brownian motion for ηt and thus

normally distributed returns

ln

(
ηT

η0

)
∼ N

([
µ̂−

1

2
σ̂

2

]
x̄T, σ̂

2
x̄T

)
• technological progress increases both, the mean-return and the variance of the

production process
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Interest Rate Dynamics

• using the assumption about the factor and production dynamics allows the equilibrium

interest rate rt becomes

rt = µ(xt, t)− σ2
(xt, t) = µ̂xt − σ̂2

xt

• applying Itô’s lemma yields the diffusion process of the risk-free rate

drt =
(
µ̂− σ̂2

)
dxt

=
(
a0

(
µ̂− σ̂2

)
+ a1rt

)
dt+ b0

√
µ̂− σ̂2

√
rtdζt

= κ (r̄ − rt) dt+ σ̃
√
rtdζt

where κ = −a1, r̄ = −
(
a0

(
µ̂− σ̂2

))
a−1

1 and σ̃ = b0

√
µ̂− σ̂2
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Stochastic Properties of rt

(i) rt follows a square root diffusion that is almost surely non-negative

(ii) the interest rate is elastically pulled towards a long term value r̄ > 0

(iii) κ > 0 determines the speed of mean-reversion

(iv) “Feller condition”: if 2κr̄ ≥ σ̃2 and rt > 0, then the process does not reach zero

almost surely

(v) rt follows a non-central chi-square distribution

(vi) rt for s ≤ t, the conditional mean and variance are

E [rt| Fs] = rse
κ(t−s)

+ r̄
(

1− e−κ(t−s)
)

Var [rt| Fs] =
σ̃2

κ
rs
(
e
−κ(t−s) − e−2κ(t−s)

)
+
r̄σ̃2

2κ

(
1− e−κ(t−s)

)2

this directly follows from the distributional properties or can be derived using Itô’s

lemma (see appendix A)
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Empirical Properties of Interest Rates that are reflected by rt

(i) rt shows mean-reversion

(ii) interest rates can not become negative ⇒ rt is a suitable model for the nominal

interest rate

(iii) even if the Feller condition is not fulfilled and rt = 0, then this value is not absorbing

(iv) the absolute variance of the interest rate increases when rt increases
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Sample Paths of the CIR Process
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Figure 1: Sample paths for the CIR process with

r0 = 0.10, κ = 1.0, r̄ = 0.10, σ̃ = 0.20.
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VI) Equilibrium Pricing of Contingent Claims

• just like the risk-free rate, all contingent claims are in zero net supply and thus not held

by the representative investor in equilibrium

• denote by P (Wt, xt, t) the price of a contingent claim

• by Itô’s lemma, its differential takes the form

dPt =
∂P

∂t
dt+

∂P

∂Wt

dWt +
∂P

∂xt
dxt +

1

2

∂2P

∂W 2
t

(dWt)
2

+
1

2

∂2P

∂x2
t

(dxt)
2

+
∂2P

∂Wt∂xt
dWtdxt

• collecting all drift terms, we set α(Wt, xt, t) to be the instantaneous return of the

derivative security to obtain

dPt = α(Wt, xt, t)Ptdt+
∂P

∂Wt

Wtσdzt +
∂P

∂xt
bdζt
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• accordingly, we choose

βη(Wt, xt, t)Pt =
∂P

∂Wt

Wtσ, βx(Wt, xt, t)Pt =
∂P

∂xt
b

to get the following expression for the instantaneous yield of the contingent claim

dPt

Pt
= α(Wt, xt, t)dt+ βη(Wt, xt, t)dzt + βx(Wt, xt, t)dζt

• let ωη be the proportion of wealth that is invested in the production opportunity and

ωP be the proportion invested in the derivative instrument

• (1− ωη − ωP )Wt is the amount invested in the risk-free instrument

• the dynamic budget equation is

dWt = (ωηWt(µ− rt) + ωPWt(α− rt) +Wtrt − Ct) dt

+Wt (ωησ + ωPβη) dzt +WtωPβxdζt
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• the new optimization problem is 0 = maxCt,ωη,ωP {Ψ(Ct, ωη, ωP )} s.t. Ct ≥ 0,

ωη ≥ 0 with

Ψ(Ct, ωη, ωP )

= U(Ct, t)

+
∂J

∂Wt

(ωηWt(µ− rt) + ωPWt(α− rt) +Wtrt − Ct) +
∂J

∂xt
a+

∂J

∂t

+
1

2

∂2J

∂W 2
t

W
2
t

[
(ωησ + ωPβη)

2
+ (ωPβx)

2
+ 2 (ωησ + ωPβη)ωPβxρ

]
+

1

2

∂2J

∂x2
t

b
2

+
∂2J

∂Wt∂xt
Wt [(ωησ + ωPβη) ρ+ ωPβx] b
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• the new FOC for ωP is

∂Ψ

∂ωP
=

∂J

∂Wt

Wt(α− rt)

+
∂2J

∂W 2
t

W
2
t

[
ωP
(
β

2
η + β

2
x + 2βηβxρ

)
+ ωησβη + ωησβxρ

]
+

∂2J

∂Wt∂xt
Wt [βηρ+ βx] b = 0

• since there is zero net supply for the contingent claim, we set ωη = 1, ωP = 0 and

solve for the equilibrium excess return α− rt to get

α− rt =

[
−
∂2J/∂W 2

t

∂J/∂Wt

Wtσ −
∂2J/∂Wt∂xt

∂J/∂Wt

bρ

]
βη

+

[
−
∂2J/∂W 2

t

∂J/∂Wt

Wtσρ−
∂2J/∂Wt∂xt

∂J/∂Wt

b

]
βx
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Market Prices of Factor Risks

• the equation for the equilibrium excess return α − rt allows us to define the market

prices of factor risks as

θη = −
∂2J/∂W 2

t

∂J/∂Wt

Wtσ −
∂2J/∂Wt∂xt

∂J/∂Wt

bρ

θx = −
∂2J/∂W 2

t

∂J/∂Wt

Wtσρ−
∂2J/∂Wt∂xt

∂J/∂Wt

b

• once again, note that under iso-elastic utility

−
∂2J/∂W 2

t

∂J/∂Wt

Wt = 1− γ,
∂2J/∂Wt∂xt

∂J/∂Wt

= 0

• α − rt is the excess return that makes the representative investor indifferent between

buying and selling the contingent claim
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• θη and θx relate the excess return to the amount of risk taken in βη and βx

• just like the equilibrium risk-free rate, the market prices of factors risks are independent

of the aggregate wealth in the economy

• equilibrium prices of derivatives whose payoffs are independent of wealth are thus

independent of Wt themselves

• as shown earlier, for the special case of logarithmic utility (γ = 0), the RRA is constant

at one and the market prices of risk simplify to

θη = σ(x, t), θx = σ(x, t)ρ

• the market prices of risk do not only depend on the investor’s utility function but also

on the dynamics of the production opportunity and the state variable as well as their

correlation
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Fundamental Valuation Equation

• by Itô’s lemma, the differential of a contingent claim P (x, t) with wealth-independent

payoff takes the form

dPt =
∂P

∂t
dt+

∂P

∂xt
dxt +

1

2

∂2P

∂x2
t

(dxt)
2

=

(
∂P

∂t
+
∂P

∂xt
a(x, t) +

1

2

∂2P

∂x2
t

b
2
(x, t)

)
dt+

∂P

∂xt
b(x, t)dζt

• using the previous, the instantaneous drift α(x, t) and the instantaneous diffusion

βx(x, t) are

α(x, t) =
1

Pt

(
∂P

∂t
+
∂P

∂xt
a(x, t) +

1

2

∂2P

∂x2
t

b
2
(x, t)

)

βx(x, t) =
1

Pt

(
∂P

∂xt
b(x, t)

)
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• the contingent claim’s dynamics can then be expressed as

dPt = α(x, t)Ptdt+ βx(x, t)Ptdζt

• plugging these expressions for α(x, t) and β(x, t) into the equation for the equilibrium

excess return yields the “fundamental valuation equation”

α(x, t)− rt = θxβx(x, t)

⇒
1

Pt

(
∂P

∂t
+
∂P

∂xt
a(x, t) +

1

2

∂2P

∂x2
t

b
2
(x, t)

)
− rt =

σ(x, t)

Pt

(
∂P

∂xt
b(x, t)

)

⇒
∂P

∂t
+
∂P

∂xt
[a(x, t)− σ(x, t)b(x, t)ρ] +

1

2

∂2P

∂x2
t

b
2
(x, t) = rPt
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Valuation of Zero-Bonds

• let P (xt, t, T ) be the time t price of a default-free zero bond that pays one unit of

the consumption good in T ≥ t
• note that the payoff of the zero bond is independent of wealth ⇒ its equilibrium

dynamics can be described by the fundamental valuation equation when utility is

logarithmic

∂P

∂t
+
∂P

∂xt
[a(xt, t)− σ(xt, t)b(xt, t)ρ] +

1

2

∂2P

∂x2
t

b
2
(xt, t) = rtPt

• we replace the general drift and diffusion terms by the concrete choice that has been

made to derive the CIR process (a(xt, t) = a0 + a1xt, b(xt, t) = b0
√
xt and

σ(xt, t) = σ̂
√
xt) to get

∂P

∂t
+
∂P

∂xt
(a0 + a1xt − σ̂b0ρxt) +

1

2

∂2P

∂x2
t

b
2
0xt = rtPt
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• since the equilibrium interest rate is rt =
(
µ̂− σ̂2

)
xt, we can apply a change of

variable from P (xt, t, T ) to P (rt, t, T ) where

∂P

∂xt
=
∂P

∂rt

(
µ̂− σ̂2

)
,

∂2P

∂x2
t

=
∂2P

∂r2
t

(
µ̂− σ̂2

)2

and obtain

∂P

∂t
+
∂P

∂rt

(
a0

(
µ̂− σ̂2

)
+ a1rt − σ̂b0ρrt

)
+

1

2

∂2P

∂x2
t

b
2
0

(
µ̂− σ̂2

)
rt = rtPt

• finally, using the notation of the interest rate dynamics and setting ψ = σ̂b0ρ yields

∂P

∂t
+
∂P

∂rt
(κ (r̄ − rt)− ψrt) +

1

2

∂2P

∂x2
t

σ̃rt = rtPt

• ψrt is the covariance of interest rate changes with the proportional change in optimally

invested wealth (the interest rate’s “beta”)
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• the boundary condition for the zero bond is P (rt, T, T ) = 1

• the CIR process falls into the general class of affine term structure models where the

drift and the squared diffusion term are affine functions of rt

• there exists a closed form solution for zero bond prices under affine term structure

models and for the case of the CIR model it is

P (r, t, T ) = A(τ)e
−B(τ)rt, τ = T − t

where

A(τ) =

[
2θe(θ+κ+ψ)τ2

(θ + κ+ ψ) (eθτ − 1) + 2θ

]2κr̄/σ̃2

B(τ) =
2
(
eθτ − 1

)
(θ + κ+ ψ) (eθτ − 1) + 2θ

θ =

√
(κ+ ψ)

2
+ 2σ̃2
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Comparative Statics

parameter sensitivity of P (r, t, T )

rt ↑ ↓ (convex)

τ ↑ ↓
θ ↑ ↓ (convex)

κ ↑, rt > θ ↑ (concave)

κ ↑, rt < θ ↓ (convex)

ψ ↑ ↑ (concave)

σ2 ↑ ↑ (concave)
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Term Structure of Interest Rates for different rt
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Figure 2: Term structures of interest rates for

r0 ∈ {0.025, 0.050, . . . , 0.175}, κ = 1.0, r̄ = 0.10, σ̃ = 0.20.
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Term Structure of Interest Rates for different κ
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Figure 3: Term structures of interest rates for r0 = 0.05,

κ ∈ {0.5, 1.0, 1.5, 2.0}, r̄ = 0.10, σ̃ = 0.20.
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VII) In Contrast: the Arbitrage Approach

• the dynamics of the state variable xt and the risk-free rate are given exogenously

• derivative instruments are priced relative to given market prices

• the market price of risk (MPR) relates the excess return to the amount of risk taken

and is determined exogenously

α− rt = θx(xt, t)βx

• if no exogenous prices are available that can be used to determine the MPR, one has

to impose assumptions about its functional form

• closing the model by choosing a certain function form of θx might result in internal

inconsistencies and a model that is not free of arbitrage
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• the equilibrium approach determines the MPR endogenously within the specific model

of the economy

• not all functional forms of θx can be obtained within an equilibrium model but all

endogenously determined MPR yield a pricing model that is free of arbitrage
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Thank you!

-
Questions?
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Appendix A

-

Derivation of the first two Moments of the CIR Process

• we note that there is negative geometric drift proportional to κ and thus set Xt =

f(t, x) = eκtx to obtain

df(t, x) = ft(t, rt)dt+ fx(t, rt)drt +
1

2
fxx(t, rt) (drt)

2

= κe
κt
rtdt+ e

κt
κ (r̄ − rt) dt+ e

κt
σ̃
√
rtdζt

= e
κt
κr̄dt+ e

κt
σ̃
√
rtdζt
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• integrating both sides yields

e
κt
rt = e

κs
rs + κr̄

∫ t

s

e
κτ
dτ + σ

∫ t

s

√
rτdζt

= e
κs
rs + r̄

(
e
κt − eκs

)
+ σ̃

∫ t

s

√
rτdζt

• since an Itô integral has zero expected value, we get

E [rt| Fs] = rse
−κ(t−s)

+ r̄
(

1− e−κ(t−s)
)

• we get the following limiting relationships for the mean-reversion factor κ

lim
κ→∞

E [rt| Fs] = r̄, lim
κ→0

E [rt| Fs] = rs

• note that dXt as computed above can be expressed as

dXt = e
κt
κr̄dt+ e

κt
2 σ̃
√
Xtdζt

The Cox-Ingersoll-Ross Model - Matthias Thul, Ally Quan Zhang 49



• applying the Itô formula to compute d (Xt)
2

yields

d (Xt)
2

= 2XtdXt + (dXt)
2

= 2e
κt
κr̄Xtdt+ 2e

κt
2 σ̃Xt

√
Xtdζt + e

κt
σ̃

2
Xtdt

• integrating both sides gives us

X
2
t = X

2
s +

(
2κr̄ + σ̃

2
)∫ t

s

e
κτ
Xτdτ + 2σ̃

∫ t

s

e
κτ
2 Xτ

√
Xτdζτ

• when taking the expected value, the Itô integrals drops out again

E
[
X

2
t

∣∣∣Fs] = X
2
s +

(
2κr̄ + σ̃

2
)∫ t

s

e
κτE [Xτ | Fs] dτ

= X
2
s +

(
2κr̄ + σ̃

2
)∫ t

s

e
κτ

[rse
κs

+ r̄ (e
κτ − eκs)] dτ
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• solving the integral gives a closed form solution for the expected value of X2
t

E
[
X

2
t

∣∣∣Fs] = X
2
s+

2κr̄ + σ̃2

κ
e
κs

(rs + r̄t)
(
e
κt − eκs

)
+

2κr̄ + σ̃2

2κ
r̄
(
e

2κt − e2κs
)

• back substitution of E
[
r2
t

∣∣Fs] = e−2κtE
[
X2
t

∣∣Fs] yields

E
[
r

2
t

∣∣∣Fs] = e
−2κ(t−s)

rs +
2κr̄ + σ̃2

κ
(rs + r̄t)

(
e
−κ(t−s) − e−2κ(t−s)

)
+

2κr̄ + σ̃2

2κ
r̄
(

1− e−2κ(t−s)
)

• the variance of rt can then be computes as Var [rt| Fs] = E
[
r2
t

∣∣Fs]− (E [rt| Fs])2

Var [rt| Fs] =
σ̃2

κ
rs
(
e
−κ(t−s) − e−2κ(t−s)

)
+
r̄σ̃2

2κ

(
1− e−κ(t−s)

)2

The Cox-Ingersoll-Ross Model - Matthias Thul, Ally Quan Zhang 51


