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Exercise 3.1

We first note that for u1 < u2, the Brownian increment W (u2) −W (u1) is independent

of the σ-algebra F (u1) by Definition 3.3.3(iii). By Definition 2.2.3, the random variable

X = W (u2)−W (u1) is independent of the σ-algebra F (u1) if

P(A ∩B) = P(A) · P(B)

for all A ∈ σ(X) and B ∈ F (u1). By Definition 3.3.3(i) information accumulates and

every set in F(t) for t < u1 is also in F (u1). Thus, we have

P(A ∩ C) = P(A) · P(C)

for all A ∈ σ(X) and C ∈ F(t) and it follows that the increment W (u2) −W (u1) is

independent of F(t).

Exercise 3.2

E
[
W 2(t)− t

∣∣F(s)
]

= E
[
(W (t)−W (s))2 + 2W (t)W (s)−W 2(s)− t

∣∣F(s)
]

= E
[
(W (t)−W (s))2]+ 2W (s)E [W (t)| F(s)]−W 2(s)− t

= Var (W (t)−W (s)) + 2W 2(s)−W 2(s)− t

= t− s+W 2(s)− t

= W 2(s)− s (q.e.d.)

∗The author can be contacted via #firstname#.#lastname#@gmail.com and
http://www.matthiasthul.com.
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In the second step, we used that the Brownian increment W (t)−W (s) is independent

of F(s) by Definition 3.3.3(iii) and that by Theorem 2.2.5 any function of this increment

is also independent of the σ-algebra. Furthermore, W (s) is F(s)-measurable and can thus

be taken outside the conditional expectation.

In the third step, we used that the expected value of the Brownian increment is zero by

Definition 3.3.1 to obtain the first term and the martingale property of Brownian motion

from Theorem 3.3.4 to get the second term.

Exercise 3.3 (Normal kurtosis)

The third and fourth derivative are

ϕ′′′(u) = E
[
(X − µ)3eu(X−µ)

]
=
(
3uσ4 + u3σ6

)
e

1
2
σ2u2

ϕ′′′′(u) = E
[
(X − µ)4eu(X−µ)

]
=
(
3σ4 + 6u2σ6 + u4σ8

)
e

1
2
σ2u2

and it follows that

E
[
(X − µ)4

]
= ϕ′′′′(0) = 3σ4 (q.e.d.).

Exercise 3.4 (Other variations of Brownian motion)

(i) As by the hint, we have

n−1∑
j=1

(W (tj+1)−W (tj))
2 ≤ max

0≤k≤n−1
|W (tk+1)−W (tk)| ·

n−1∑
j=0

|W (tj+1)−W (tj)| .

In the limit as the number of partition points increases, the left hand side converges

almost surely to the quadratic variation

P

(
lim
||Π||→0

n−1∑
j=1

(W (tj+1)−W (tj))
2 = T

)
= 1.

The first term on the right hand side converges almost surely to zero since Brownian

motion has continuous sample paths almost surely by Theorem 3.3.2, i.e.

P
(

lim
||Π||→0

max
0≤k≤n−1

|W (tk+1)−W (tk)| = 0

)
= 1.
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Rearranging the inequality gives

n−1∑
j=0

|W (tj+1)−W (tj)| ≥
max0≤k≤n−1 |W (tk+1)−W (tk)|∑n−1

j=0 |W (tj+1)−W (tj)|
.

Now, since the numerator converges almost surely to a positive constant and the

denominator converges almost surely to zero, it follows that the fraction converges

almost surely to plus infinity. Since it is bounded from above by the left hand side,

it follows that

P

(
lim
||Π||→0

n−1∑
j=0

|W (tj+1)−W (tj)| =∞

)
= 1.

(ii) Similar to (i), the sample cubic variation can be bounded by

0 ≤
n−1∑
j=0

|W (tj+1)−W (tj)|3 ≤ max
0≤k≤n−1

|W (tk+1)−W (tk)|·
n−1∑
j=0

(W (tj+1)−W (tj))
2 .

As argued in (i), the first term on the right hand side converges almost surely to zero

and the second term converges almost surely to the quadratic variation. Thus, the

right hand side converges almost surely to zero and consequently the sample cubic

variation converges almost surely to zero as well, i.e.

P

(
lim
||Π||→0

n−1∑
j=0

|W (tj+1)−W (tj)|3 = 0

)
= 1.

Exercise 3.5 (Black-Scholes-Merton formula)

Since W (T ) is known to be N (0, T ) normally distributed or equivalently W (T )√
T

is N (0, 1)

standard normally distributed, Theorem 1.5.2 allows us to compute the expectation as

E
[
e−rT (S(T )−K)+] = e−rT

∫ ∞
−∞

(
S(0) exp

{(
r − 1

2
σ2

)
T + σ

√
Tz

}
−K

)+

N ′(z)dz

where

N ′(z) =
1√
2π

exp

{
−x

2

2

}
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denotes the standard normal density function. Next, we want to eliminate the max

function inside the integral. We observe that the terminal payoff of the call option is

non-zero if S(T ) > X or equivalently

z ≥
ln
(

K
S(0)

)
−
(
r − 1

2
σ2
)
T

σ
√
T

= −d−.

Changing the lower limit of integration from −∞ to −d− allows us to drop the max

function and we get

. . . = e−rT
∫ −∞
−d−

(
S(0) exp

{(
r − 1

2
σ2

)
T + σ

√
Tz

}
−K

)
N ′(z)dz

= e−rT
[∫ ∞
−d−

S(0) exp

{(
r − 1

2
σ2

)
T + σ

√
Tz

}
N ′(z)dz −

∫ ∞
−d−

KN ′(z)dz

]
.

The second integral evaluates to

∫ ∞
−d−

KN ′(z)dz = K

∫ ∞
−d−
N ′(z)dz

= KP {z ≥ −d−}

= KP {z ≤ d−}

= KN (d−) .

Here, we exploited the symmetry of the normal distribution in the third step. Using

the definition of the standard normal density, we can write the first integral as

∫ ∞
−d−

S(0) exp

{(
r − 1

2
σ2

)
T + σ

√
Tz

}
N ′(z)dz

=

∫ ∞
−d−

S(0) exp

{(
r − 1

2
σ2

)
T + σ

√
Tz

}
1√
2π

exp

{
−z

2

2

}
dz

= S(0) exp

{(
r − 1

2
σ2

)
T

}∫ ∞
−d−

1√
2π

exp

{
−z

2 − 2σ
√
Tz

2

}
dz

= S(0) exp

{(
r − 1

2
σ2

)
T

}∫ ∞
−d−

1√
2π

exp

{
−z

2 − 2σ
√
Tz ± σ2T

2

}
dz

= S(0)erT
∫ ∞
−d−

1√
2π

exp

{
−z

2 − 2σ
√
Tz + σ2T

2

}
dz

= S(0)erT
∫ ∞
−d−

1√
2π

exp

−
(
z − σ

√
T
)2

2

 dz.
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We now make a change of variable by defining x = z − σ
√
T and get

. . . = S(0)erT
∫ ∞
−d−−σ

√
T

1√
2π

exp

{
−x

2

2

}
dx

= S(0)erT
∫ ∞
−d−−σ

√
T

P {ε = x} dx

= S(0)erTP
{
ε ≥ −d− − σ

√
T
}

= S(0)erTP
{
ε ≤ d− + σ

√
T
}

= S(0)erTN
(
d− + σ

√
T
)
.

Defining d+ = d− + σ
√
T and combining all previous results yields

E
[
e−rT (S(T )−K)+] = S(0)N (d+)−Ke−rTN (d−) .

Exercise 3.6

(i) We can rewrite the expectation as

E [f(X(t))| F(s)] = E [f(X(s) +X(t)−X(s))| F(s)] .

Note that X(s) = µs+W (s) is F(s)-measurable while the increment X(t)−X(s) =

µ(t− s) +W (t)−W (s) is independent of F(s). By Lemma 2.3.4, we have

E [f(X(s) +X(t)−X(s))| F(s)] = g(X(s)),

where

g(x) = E [f(x+X(t)−X(s))] .

Since X(t)−X(s) is normally distributed with mean µ(t− s) and variance t− s, we

can compute this expectation by Theorem 1.5.2 via

g(x) =

∫ ∞
−∞

f(x+ z)
1√

2π(t− s)
exp

{
−(z − µ(t− s))2

2(t− s)

}
dz.
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Making a change of variable by defining y = x+z and rearranging yields the desired

result

g(x) =
1√

2π(t− s)

∫ ∞
−∞

f(y) exp

{
−(y − x− µ(t− s))2

2(t− s)

}
dy.

(ii) Analogous to (i), we can rewrite the expectation as

E [f(S(t))| F(s)] = E
[
f

(
S(s) · S(t)

S(s)

)∣∣∣∣F(s)

]
,

where S(s) = S(0) exp {σW (s) + νs} is F(s)-measurable and the increment S(t)
S(s)

=

exp {σ(W (t)−W (s)) + ν(t− s)} is independent of F(s). By Lemma 2.3.4, we have

E
[
f

(
S(s) · S(t)

S(s)

)∣∣∣∣F(s)

]
= g(S(s)),

where

g(x) = E
[
f

(
x · S(t)

S(s)

)]
.

Since σ(W (t) −W (s)) + ν(t − s) is normally distributed with mean ν(t − s) and

variance σ2(t− s), it follows that the ratio S(t)
S(s)

is log-normally distributed with the

same parameters. The expectation can be computed as

g(x) =

∫ ∞
0

f(x · z)
1

z
√

2πσ2(t− s)
exp

{
− ln z − ν(t− s)

2σ2(t− s)

}
dz.

Making a change of variable by defining y = x · z with dy = xdz yield the desired

result

g(x) =

∫ ∞
0

f(y)
1

y
√

2πσ2(t− s)
exp

{
−

ln
(
y
x

)
− ν(t− s)

2σ2(t− s)

}
dy.
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Exercise 3.7

(i) Substituting for X(t) gives

Z(t) = exp

{
σW (t)− 1

2
σ2t

}
and by Theorem 3.6.1, Z(t) is an exponential martingale.

(ii) Since Z(t) is a martingale, the stopped process Z (t ∧ τm) is also a martingale and

we have that

1 = Z(0) = E [Z (t ∧ τm)] = E
[
exp

{
σX (t ∧ τm)−

(
σµ+

1

2
σ2

)
(t ∧ τm)

}]
for t ≥ 0.

(iii) We closely follow the argument in Section 3.6. For any time t ≤ τm, the drifted

Brownian motion is at or below the level m and thus we have that for all t ≥ 0,

0 ≤ exp {σX (t ∧ τm)} ≤ eσm.

Furthermore, since we assume that µ ≥ 0 and σ > 0, the term σµ+ 0.5σ2 is strictly

positive and thus

lim
t→∞

exp

{
−
(
σµ+

1

2
σ2

)
(t ∧ τm)

}
= I{τm<∞} exp

{
−
(
σµ+

1

2
σ2

)
τm

}
.

Now, since the first term is bounded and the second converges to zero when τm =∞,

it follows that the whole expression converges to zero in this case. Thus,

lim
t→∞

exp

{
σX (t ∧ τm)−

(
σµ+

1

2
σ2

)
(t ∧ τm)

}
= I{τm<∞} exp

{
σm−

(
σµ+

1

2
σ2

)
τm

}
.

We now take the limit for t → ∞ inside the martingale equation obtained in (ii).

The interchange of limit and expectation is justified by Theorem 1.4.9 as we can

define a non-negative random variable (constant) Y = eσm <∞ such that

P
(
Y ≥

∣∣∣∣exp

{
σX (t ∧ τm)−

(
σµ+

1

2
σ2

)
(t ∧ τm)

}∣∣∣∣) = 1
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as argued before. Thus,

1 = lim
t→∞

E
[
exp

{
σX (t ∧ τm)−

(
σµ+

1

2
σ2

)
(t ∧ τm)

}]
= E

[
lim
t→∞

exp

{
σX (t ∧ τm)−

(
σµ+

1

2
σ2

)
(t ∧ τm)

}]
= E

[
I{τm<∞} exp

{
σm−

(
σµ+

1

2
σ2

)
τm

}]
or

E
[
I{τm<∞} exp

{
−
(
σµ+

1

2
σ2

)
τm

}]
= e−σm.

Taking the limit for σ → 0 yields

E
[
I{τm<∞}

]
= P {τm <∞} = 1.

Since the stopping time τm is almost surely finite, we can drop the conditioning to

obtain

E
[
exp

{
−
(
σµ+

1

2
σ2

)
τm

}]
= e−σm.

We define

α = σµ+
1

2
σ2 ⇔ σ± = −µ±

√
2α + µ2.

The condition σ > 0 is only satisfied by the positive root and we obtain the Laplace

transform

E
[
e−ατm

]
= exp

{
mµ−m

√
2α + µ2

}
.

(iv) Differentiating the Laplace transform w.r.t. to α yields

E
[
τme

−ατm
]

=
m√

2α + µ2
exp

{
mµ−m

√
2α + µ2

}
,
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which in the limit for α → 0 becomes E [τm] = ∞. Note that the first term on the

right hand side converges to infinity since we assume that m > 0 while the second

term converges to a constant.

(v) If µ < 0 and σ > 0, then the term σµ+0.5σ2 is still strictly positive and our analysis

in (iii) up to the equation

E
[
I{τm<∞} exp

{
−
(
σµ+

1

2
σ2

)
τm

}]
= e−σm

still holds. We now take the limit for σ → −2µ = 2|µ| (since µ < 0) such that the

exponential term inside the expectation converges to one and obtain

E
[
I{τm<∞}

]
= P {τm <∞} = e−2m|µ| < 1.

Note that there is a typo in the exercise (at least in the 2004 edition) - instead of

P {τm <∞} = e−2x|µ| it should read P {τm <∞} = e−2m|µ| which is what we derived

above.

In contrast to (iii), τm is infinite with non-zero probability and we cannot simply

drop the conditioning. Defining α in the same way as in (iii), again taking the

positive root for σ gives

E
[
I{τm<∞}e−αm

]
= exp

{
mµ−m

√
2α + µ2

}
.

However, since e−αm = 0 if and only if τm = ∞ since m > 0 the conditioning can

still be dropped and we obtain the same result as in (iii).

Exercise 3.8

(i) We have

9



ϕn(u) = E
[
exp

{
u√
n
Mnt,n

}]
= E

[
exp

{
u√
n

nt∑
k=1

Xk,n

}]

= E

[
nt∏
k=1

exp

{
u√
n
Xk,n

}]

=
nt∏
k=1

E
[
exp

{
u√
n
Xk,n

}]
=

(
E
[
exp

{
u√
n
X1,n

}])nt
=

(
e

u√
n p̃n + e

− u√
n q̃n

)nt
=

(
e

u√
n

r
n

+ 1− e−σ/
√
n

eσ/
√
n − e−σ/

√
n
− e−

u√
n

r
n

+ 1− eσ/
√
n

eσ/
√
n − e−σ/

√
n

)nt

(q.e.d.).

Here, we used that the increments X1,n, . . . , Xn,n are independent in the fourth

equality to write the expectation as the product as the product of the expectations.

The fifth step uses that increments are also identically distributed such that it is

sufficient to compute the expression for X1,n.

(ii) First note that

ϕ 1
x2

(u) =

(
eux

rx2 + 1− e−σx

eσx − e−σx
− e−ux rx

2 + 1− eσx

eσx − e−σx

) t
x2

.

Thus

lnϕ 1
x2

(u) =
t

x2
ln

(
eux

rx2 + 1− e−σx

eσx − e−σx
− e−ux rx

2 + 1− eσx

eσx − e−σx

)
=

t

x2
ln

((
rx2 + 1

) eux − e−ux
eσx − e−σx

+
e(σ−u)x − e−(σ−u)x

eσx − e−σx

)
=

t

x2
ln

(
(rx2 + 1) sinh(ux) + sinh((σ − u)x)

sinh(σx)

)
=

t

x2
ln

(
(rx2 + 1) sinh(ux) + sinh(σx) cosh(ux)− cosh(σx) sinh(ux)

sinh(σx)

)
=

t

x2
ln

(
cosh(ux) +

(rx2 + 1− cosh(σx)) sinh(ux)

sinh(σx)

)
(q.e.d.).
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(iii) Using the hint, we get

cosh(ux) +
(rx2 + 1− cosh(σx)) sinh(ux)

sinh(σx)

= 1 +
1

2
u2x2 +O

(
x4
)

+

(
rx2 − 1

2
σ2x2 +O (x2)

)
(ux+O (x3))

σx+O (x3)

= 1 +
1

2
u2x2 +O

(
x4
)

+

(
r − 1

2
σ2
)
ux3 (1 +O (x2))

σx (1 +O (x2))

= 1 +
1

2
u2x2 +

rux2

σ
− 1

2
σux2 +O

(
x4
)

(q.e.d.).

Here, we used that

ux+O
(
x3
)

= ux
(
1 +O

(
x2
))

in the second equality.

(iv) Finally,

lnϕ 1
x2

(u) =
t

x2
ln

(
1 +

(
1

2
u+

r

σ
− 1

2
σ

)
ux2 +O

(
x4
))

=
t

x2

[(
1

2
u+

r

σ
− 1

2
σ

)
ux2 +O

(
x4
)]

=

(
1

2
u+

r

σ
− 1

2
σ

)
tu+O

(
x2
)
.

Thus,

lim
x↓0

lnϕ 1
x2

(u) =
1

2
tu2 +

1

σ

(
r − 1

2
σ2

)
tu.

It follows that

lim
n→∞

E
[
exp

{
uσ√
n
Mnt,n

}]
= lim

n→∞
ϕn(σu)

= lim
x↓0

ϕ 1
x2

(σu)

= exp

{
lim
x↓0

lnϕ 1
x2

(σu)

}
= exp

{
1

2
u2σ2t+

(
r − 1

2
σ2

)
tu

}
.
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We recognize this as the moment generating function of a normal random variable

and conclude that

lim
n→∞

σ√
n
Mnt,n ∼ N

((
r − 1

2
σ2

)
t, σ2t

)
(q.e.d.).

Exercise 3.9 (Laplace transform of first passage density)

(i) We first note that

dak(m)

dm
= − m√

2π

∫ ∞
0

t−k/2−1 exp

{
−αt− m2

2t

}
dt

= − m√
2π

∫ ∞
0

t−(k+2)/2 exp

{
−αt− m2

2t

}
dt

= −mak+2(m).

Thus

gm(α,m) = a3(m) +m
da3(m)

dm

= a3(m)−m2a5(m)

gmm(α,m) =
da3(m)

dm
− 2ma5(m)−m2da5(m)

dm

= −3ma5(m) +m3a7(m).

(ii)

a5(m) =
1√
2π

∫ ∞
0

t−5/2 exp

{
−αt− m2

2t

}
dt

= (1)
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