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Exercise 4.1

This proof is fully analogous to the one of Theorem 4.2.1. We want to show that for

0 ≤ s ≤ t ≤ T

E[I(t)|F(s)] = I(s).

Assume again, that the s ∈ [tl, tl+1) and t ∈ [tk, tk+1) for l ≤ k. We start by splitting

up the sum into an F(s) measurable part and a part independent of F(s) and obtain

I(t) =
l−1∑
j=0

∆ (tj) [M (tj+1)−M (tj)] + ∆ (tl) [M (tl+1)−M (tl)]

+
k−1∑
j=l+1

∆ (tj) [M (tj+1)−M (tj)] + ∆ (tk) [M(t)−M (tk)]

The first sum is F(s) measurable. The conditional expectation of the second term is

E [∆ (tl) [M (tl+1)−M (tl)]| F(s)] = ∆ (tl) [E [M (tl+1)| F(s)]−M (tl)]

= ∆ (tl) [M(s)−M (tl)] .

Here we have used that M (tl) is F(s) measurable. Furthermore, the martingale

property of M(t) implied that E [M (tl+1)| F(s)] = M(s). The conditional expectation of

each element of the second sum is
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E [∆ (tj) [M (tj+1)−M (tj)]| F(s)] = E [E [∆ (tj) [M (tj+1)−M (tj)]| F (tj)]| F(s)]

= E [∆ (tj) [E [M (tj+1)| F (tj)]−M (tj)]| F(s)]

= E [∆ (tj) [M (tj)−M (tj)]| F(s)]

= 0.

Here, we first used the tower law of iterated conditioning, then took out all F (tj)

measurable terms from the inner conditional expectation and finally used the martingale

property of M(t) again. The same steps can be used to show that

E [∆ (tk) [M(t)−M (tk)]| F(s)] = 0.

It follows that

E [I(t)| F(s)] =
l−1∑
j=0

∆ (tj) [M (tj+1)−M (tj)] + ∆ (tl) [M(s)−M (tl)]

= I(s) (q.e.d.)

Exercise 4.4 (Stratonovich integral)

(i) Since the elements in the sum are independent, we start by computing the mean

and the variance of
(
W
(
t∗j
)
−W (tj)

)2
. This is completely analogous to the proof

of Theorem 3.4.3.

E
[(
W
(
t∗j
)
−W (tj)

)2
]

= Var
[
W
(
t∗j
)
−W (tj)

]
= t∗j − tj

E
[(
W
(
t∗j
)
−W (tj)

)4
]

= 3E
[(
W
(
t∗j
)
−W (tj)

)2
]2

= 3
(
t∗j − tj

)2

Var
[(
W
(
t∗j
)
−W (tj)

)2
]

= 3
(
t∗j − tj

)2 −
(
t∗j − tj

)2
= 2

(
t∗j − tj

)2

Here, we have used that the forth moment of a normal random variable is three

times its variance squared. The mean and variance of QΠ/2 are then given by

E
[
QΠ/2

]
=

n−1∑
j=0

E
[(
W
(
t∗j
)
−W (tj)

)2
]

=
n−1∑
j=0

t∗j − tj =
n−1∑
j=0

tj+1 − tj
2

=
1

2
T
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Var
[
QΠ/2

]
=

n−1∑
j=0

Var
[(
W
(
t∗j
)
−W (tj)

)2
]

=
n−1∑
j=0

2
(
t∗j − tj

)2
=

n−1∑
j=0

1

2
(tj+1 − tj)2

≤ ||Π||
2

n−1∑
j=0

1

2
(tj+1 − tj)

lim
||Π||→0

Var
[
QΠ/2

]
= 0 · 1

2
T = 0 (q.e.d.)

Since the expected value of QΠ/2 is the same for all partitions, but the variance as

limit zero when the maximum partition size gets smaller, we can conclude that QΠ/2

has limit 1
2
T .

(ii) We expand the sum in the definition of the Stratonovich integral and add the terms

necessary to obtain an Itô integral over the partition QΠ/2.

∫ T

0

W (t) ◦ dW (t)

= lim
||Π||→0

n−1∑
j+0

W
(
t∗j
)

(W (tj+1)−W (tj))

= lim
||Π||→0

n−1∑
j+0

{
W
(
t∗j
)
W (tj+1)−W

(
t∗j
)
W (tj)±W

(
t∗j
)2 ± 2W (tj)W

(
t∗j
)
±W (tj)

2
}

= lim
||Π||→0

n−1∑
j+0

{
W
(
t∗j
)
W (tj+1)−W

(
t∗j
)2
}

+ lim
||Π||→0

n−1∑
j+0

{
W (tj)W

(
t∗j
)
−W (tj)

2}
+ lim
||Π||→0

n−1∑
j+0

{
W (tj)

2 − 2W (tj)W
(
t∗j
)

+W
(
t∗j
)2
}

=

∫ T

0

W (t)dW (t) + lim
||Π||→0

n−1∑
j+0

(
W (tj)

2 −W
(
t∗j
)2
)2

=
1

2
W 2(T ) (q.e.d.)

In the last step, we have used the result that
∫ T

0
W (t)dW (t) = 1

2
W 2(T ) − 1

2
T , as

e.g. shown in Example 4.3.2 and the quadratic variation of the Stratonovich integral

that we calculated in part (i).
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Exercise 4.5 (Solving the generalized geometric Brownian motion
equation)

Let f(t, x) = lnx. We have

∂f

∂t
= 0,

∂f

∂x
=

1

x
,

∂2f

∂x2
= − 1

x2

and

(dS(t))2 = σ2(t)S2(t)dt.

Applying Itô’s lemma, the differential of the log stock price d lnS(t) becomes

d lnS(t) = df(t, S(t))

=
1

S(t)
dS(t)− 1

2

1

S2(t)
(dS(t))2

= α(t)dt+ σ(t)dW (t)− 1

2
σ2(t)dt

=

(
α(t)− 1

2
σ2(t)

)
dt+ σ(t)dW (t).

In integral form, we get

lnS(t) = lnS(0) +

∫ t

0

(
α(s)− 1

2
σ2(s)

)
ds+

∫ t

0

σ(s)dW (s). (1)

Taking the exponential yields

S(t) = S(0) exp

{∫ t

0

(
α(s)− 1

2
σ2(s)

)
ds+

∫ t

0

σ(s)dW (s)

}
.

The distribution of S(t) will in general not be log-normal. In order to have log-

normality for S(t), we require lnS(t) to be normally distributed. By Theorem 4.4.9, the

Itô integral in Equation (1) is only guaranteed to be normally distributed if α(t) and σ(t)

are deterministic functions of time. In this case

lnS(t) ∼ N
(∫ t

0

(
α(s)− 1

2
σ2(s)

)
ds,

∫ t

0

σ2(s)ds

)
.

Note that this includes the less general case of a Geometric Brownian Motion with

α(t) = ᾱ and σ(t) = σ̄, i.e the drift and diffusion coefficient being a constant as it is

assumed in the Black-Scholes model.
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Exercise 4.6

Let f(t, x) = S(0)ex. We have

∂f

∂t
= 0,

∂f

∂x
= f(x),

∂2f

∂x2
= f(x).

Now define

X(t) =

(
α− 1

2
σ2

)
t+ σW (t).

By the Itô formula, the differential of S(t) is given by

dS(t) = df(t,X(t))

= S(t)dX(t) +
1

2
S(t)dX(t)dX(t)

= αS(t)dt− 1

2
σ2S(t)dt+ σS(t)dW (t) +

1

2
σ2S(t)dt

= αS(t)dt+ σS(t)dW (t).

Now let f(t, x) = xp such that

∂f

∂t
= 0,

∂f

∂x
= pxp−1,

∂2f

∂x2
= p(p− 1)xp−1.

Using the Itô formula to compute the differential of d (Sp(t)) yields

d (Sp(t)) = d (f(t, S(t)))

= pSp−1(t)dS(t) +
1

2
p(p− 1)Sp−2(t)dS(t)dS(t)

= αpSp(t)dt+ σpSp(t)dW (t) +
1

2
σ2p(p− 1)Sp(t)dt

=

(
α +

1

2
(p− 1)

)
pSp(t)dt+ σpSp(t)dW (t).

Exercise 4.7

(i) Let f(t, x) = x4. We have

∂f

∂t
= 0,

∂f

∂x
= 4x3,

∂2f

∂x2
= 12x2.

5



Using the Itô formula to compute the differential of d (W 4(t)) yields

d
(
W 4(t)

)
= 4W 3(t)dW (t) + 6W 2(t)dt

W 4(t) = 4

∫ T

0

W 3(t)dW (t) + 6

∫ T

0

W 2(t)dt

Note that there is in general a constant of integration in the second equation. But

since W 4(0) = 0, we omitted it directly.

(ii) Taking expectations on both sides and using that an Itô integral is a martingale that

starts at zero yields

E
[
W 4(t)

]
= 4E

[∫ T

0

W 3(t)dW (t)

]
+ 6E

[∫ T

0

W 2(t)dt

]
= 6

∫ T

0

E
[
W 2(t)

]
dt = 6

∫ T

0

tdt

= 6

∣∣∣∣12t2
∣∣∣∣T
0

= 3T 2 (q.e.d.)

(iii) Let f(t, x) = x6. We have

∂f

∂t
= 0,

∂f

∂x
= 6x5,

∂2f

∂x2
= 30x4.

Using the Itô formula to compute the differential of d (W 6(t)) yields

d
(
W 6(t)

)
= 6W 5(t)dW (t) + 15W 4(t)dt

W 6(t) = 6

∫ T

0

W 5(t)dW (t) + 15

∫ T

0

W 4(t)dt

Taking expectations on both sides and using the result in part (ii) yields

E
[
W 6(t)

]
= 6E

[∫ T

0

W 5(t)dW (t)

]
+ 30E

[∫ T

0

W 4(t)dt

]
= 15

∫ T

0

E
[
W 4(t)

]
dt = 15

∫ T

0

3t2dt

= 15
∣∣t3∣∣T

0
= 15T 3
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Exercise 4.8 (Solving the Vasicek equation)

(i) Let f(t, x) = eβtx. We have

∂f

∂t
= βf(t, x),

∂f

∂x
= eβt,

∂2f

∂x2
= 0.

Using the Itô formula, we can compute the differential of d
(
eβtR(t)

)
to be

d
(
eβtR(t)

)
= df(t, R(t))

= βeβtR(t)dt+ eβtdR(t)

= βeβtR(t)dt+ eβtαdt− βeβtR(t)dt+ eβtσdW (t)

= eβtαdt+ eβtσdW (t) (2)

(ii) Integrating Equation (2) yields

eβtR(t) = R(0) +

∫ t

0

eβuαdu+

∫ t

0

eβuσdW (u)

= R(0) + α

∣∣∣∣ 1β eβu
∣∣∣∣t
0

+ σ

∫ t

0

ebudW (u)

= R(0) +
α

β

(
eβt − 1

)
+ σ

∫ t

0

ebudW (u)

Thus, R(t) is given by

R(t) = e−βtR(0) +
α

β

(
1− e−βt

)
+ e−βtσ

∫ t

0

ebudW (u)

This is the same expression as given in Example 4.4.10.

Note that the solution strategy employed is very common for stochastic differential

equations with a geometric drift term. Let X(t) = α(t)X(t)dt + . . .. Then by

computing the differential of e−α(t)tX(t), we can remove the geometric drift.
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Exercise 4.9

(i)

Ke−rτN ′ (d−) = Ke−rτ
1√
2π

exp

{
−
d2
−

2

}
= K

1√
2π

exp

{
− 1

2σ2τ

(
ln
( x
K

)
+

(
r − 1

2
σ2

)
τ

)2

− rτ

}

= K
1√
2π

exp

{
− 1

2σ2τ

(
ln2
( x
K

)
+ 2 ln

( x
K

)(
r − 1

2
σ2

)
τ

+

(
r − 1

2
σ2

)2

τ 2 + 2rσ2τ 2

)}

= K
1√
2π

exp

{
− 1

2σ2τ

(
ln2
( x
K

)
+ 2 ln

( x
K

)(
r − 1

2
σ2

)
τ

+

(
r +

1

2
σ2

)2

τ 2

)
± ln

( x
K

)}

= K
1√
2π

exp
{

ln
( x
K

)}
exp

{
− 1

2σ2τ

(
ln2
( x
K

)
+2 ln

( x
K

)(
r +

1

2
σ2

)
τ +

(
r +

1

2
σ2

)2

τ 2

)}

= x
1√
2π

exp

{
− 1

2σ2τ

(
ln
( x
K

)
+

(
r +

1

2
σ2

)
τ

)2
}

= xN ′ (d+) (q.e.d.)

(ii)

cx =
∂

∂x

[
xN (d+)−Ke−rτN (d−)

]
= N (d+) + xN ′ (d+)

∂d+

∂x
−Ke−rτN ′ (d−)

∂d−
∂x

= N (d+) (q.e.d.)

Here, we used that

∂d+

∂x
=
∂d−
∂x

=
1

xσ
√
τ

as well as the result from (i).

(iii) First, note that
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∂d±
∂t

=
∂

∂t

1

σ
√
T − t

[
ln
( x
K

)
+

(
r ± 1

2
σ2

)
(T − t)

]
=

1

2σ
√

(T − t)3

[
ln
( x
K

)
+

(
r ± 1

2
σ2

)
(T − t)

]
− 1

σ
√
T − t

(
r ± 1

2
σ2

)
and consequently

∂d+

∂t
− ∂d−

∂t
= − σ

2
√
T − t

.

We thus get

ct =
∂

∂t

[
xN (d+)−Ke−r(T−t)N (d−)

]
= xN ′ (d+)

∂d+

∂t
− rKe−r(T−t)N (d−)−Ke−r(T−t)N ′ (d−)

∂d−
∂t

= xN ′ (d+)

(
∂d+

∂t
− ∂d−

∂t

)
− rKe−r(T−t)N (d−)

= − σx

2
√
T − t

N ′ (d+)− rKe−r(T−t)N (d−) (q.e.d.).

(iv) We first need to compute cxx, i.e. the gamma of the option.

cxx = N ′ (d+)
∂d+

∂x
=

1

xσ
√
τ
N ′ (d+)

Substituting into the PDE yields

ct(t, x) + rxcx(t, x) +
1

2
σ2cxx(t, x)− rc(t, x)

= − σx

2
√
τ
N ′ (d+)− rKe−rτN (d−) + rxN (d+) +

σx

2
√
τ
N ′ (d+)− rxN (d+)

+rKe−rτN (d−)

= 0 (q.e.d.).

(v)

(vi)

(vii)
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Exercise 4.11

When dynamically replicating an mispriced option in the Black-Scholes model, we have to

decide upon which volatility to use to compute the hedge ratio. In this case, the market

uses a volatility of σ1 to price the option at all times t ∈ [0, T ]. Knowing that all model

assumption hold but with the actual volatility of the underlying diffusion being σ2 > σ1,

we will enter a long position in the underpriced european call option and dynamically

delta hedge it by shorting ∆(t) = ∂c
∂S

shares of the underlying. But since the delta itself

depends upon the volatility, there are two possibilities to do this: Either we use the

market implied volatility (σ1) or the actual volatility (σ2) to compute the hedge ratio.

These two approaches will in general lead to different returns. As implicitly suggested by

the exercise, we will use the delta calculated based upon the implied volatility to hedge

the long position in the european call option.

Let f(t, x) = e−rtx. We have

∂f

∂t
= −rf(t, x),

∂f

∂x
= e−rt,

∂2f

∂x2
= 0.

Apply Itô’s lemma to the differential of the discounted portfolio value d (e−rtX(t))

d
(
e−rtX(t)

)
= df(t,X(t))

= −re−rtX(t)dt+ e−rtdX(t)

= e−rt (−rX(t)dt+ dX(t)) . (3)

We furthermore note that the differential of the call option price dc(t, S(t)) evolves

according to

dc(t, S(t)) =
∂c

∂t
dt+

∂c

∂S
dS(t) +

1

2

∂2c

∂S2
(dS(t))2

=

(
∂c

∂t
+

1

2
σ2

2S
2(t)

∂2c

∂S2

)
dt+

∂c

∂S
dS(t). (4)

Plugging the given differential of the portfolio value and the differential of the call

option price in Equation (4) back into Equation (3) yields
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d
(
e−rtX(t)

)
= e−rt

[
−rX(t)dt+

(
∂c

∂t
+

1

2
σ2

2S
2(t)

∂2c

∂S2

)
dt+

∂c

∂S
dS(t)

− ∂c
∂S

dS(t) + rX(t)dt− rc(t, S(t))dt+ rS(t)
∂c

∂S
dt

−1

2

(
σ2

2 − σ2
1

)
S2(t)

∂2c

∂S2
dt

]
= e−rt

[
∂c

∂t
+

1

2
σ2

1S
2(t)

∂2c

∂S2
+ rS(t)

∂c

∂S
− rc(t, S(t))

]
dt.

We note that the call price c(t, S(t)) is a specific solution to the Black-Scholes PDE

where the volatility is equal to σ1

∂c

∂t
+ rS(t)

∂c

∂S
+

1

2
σ2

1S
2(t)

∂2c

∂S2
= rc(t, S(t))

for the payoff-specific terminal condition c(T, S(T )) = max(S(T )−K, 0), S(T ) ≥ 0 and

the boundary conditions c(t, 0) = 0, 0 ≤ t ≤ T and limS(t)→∞
{
c(t, S(t))−

(
S(t)−Ke−r(T−t)

)}
=

0, 0 ≤ t ≤ T . Using this result, it directly follows that d (e−rtX(t)) = 0.

Exercise 4.13 (Decomposition of correlated Brownian motions
into independent Brownian motions)

The differential form of B1(t) and B2(t) are given by

dB1(t) = dW1(t)

dB2(t) = ρ(t)dW1(t) +
√

1− ρ2(t)dW2(t).

This allows us to express the differentials of W1(t) and W2(t) in terms of the changes

in the correlated Brownian motions B1(t) and B2(t)

dW1(t) = dB1(t)

dW2(t) = − ρ(t)√
1− ρ2(t)

dB1(t) +
1√

1− ρ2(t)
dB2(t). (5)

We have to show that these two processes are independent Brownian motions. While it

is obvious that W1(t) is a Brownian motion since it is just equal to B1(t), we have to check

if this also holds for W2(t). According to Lévy’s theorem, any continuous martingale M(t)

with M(0) = 0 and quadratic variation equal to [M,M ](t) = t (i.e. dM(t)dM(t) = dt) is a
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Brownian motion. Furthermore, according to the extended Lévy theorem, two Brownian

motions, with zero cross variation (i.e. dW1(t)dW2(t) = 0) are independent.

(i) Continuity:

The continuity of W2(t) follows from the continuity of the two Brownian motions

B1(t) and B2(t). To see this explicitly, we write down the integral form of Equation

(5) to get

W2(t) = W2(0)−
∫ t

0

ρ(s)√
1− ρ2(s)

dB1(s) +

∫ t

0

1√
1− ρ2(s)

dB2(s). (6)

Since an Itô integral is a continuous function of its upper limit of integration, W2(t)

is continuous as well.

(ii) Martingale property:

The martingale property of W2(t) directly follows from the absence of a drift term

in Equation (5) or its representation as an Itô integral in Equation (6).

(iii) Starting at zero:

Given the information in the exercise, we can’t show that W2(0) = 0. When in-

tegrating Equation (5), we have to add a constant of integration that might take

any value in R. Similarly, we could argue that in the equation for dB2(t), only the

differential dW2(t) and thus its initial value does not matter.

(iv) Unit quadratic variation:

The quadratic variation of W2(t) can be computed as

dW2(t)dW2(t) =
ρ2(t)

1− ρ2(t)
dt+

1

1− ρ2(t)
dt− 2

ρ2(t)

1− ρ2(t)
dt

=
1− ρ2(t)

1− ρ2(t)
dt = dt (q.e.d.).

and it follows that [W2,W2](t) = t.
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(v) Zero cross variation:

Using dB1(t)dB1(t) = dt and dB1(t)dB2(t) = ρ(t)dt, the instantaneous cross varia-

tion between W1(t) and W2(t) can be computed as

dW1(t)dW2(t) = − ρ(t)√
1− ρ2(t)

dt+
ρ(t)√

1− ρ2(t)
dt = 0.

This establishes that W1(t) and W2(t) have zero cross-covariance. An alternative

proof of this result directly computes dB1(t)dB2(t)

dB1(t)dB2(t) = ρ(t)dt+
√

1− ρ2(t)dW1(t)dW2(t).

This equation is only equal to ρ(t)dt as given in the exercise, when

√
1− ρ2(t)dW1(t)dW2(t) = 0.

Since ρ ∈ (−1, 1), the square root term can never be equal to zero and we conclude

that dW1(t)dW2(t) = 0.

Exercise 4.15 (Creating correlated Brownian motions from inde-

pendent ones)

(i) Similar to Exercise 4.13, we use Lévy’s theorem to show that Bi(t) is a Brownian

motion for each i = 1, . . . ,m. Since Wj(0) = 0 for each j = 1, . . . , d, it directly

follows from the definition of Bi(t) that Bi(0) = 0. Furthermore, due to its repre-

sentation as a sum of Itô integrals, we obtain both the continuity and the martingale

property. It remains to show that Bi(t) has quadratic variation [Bi, Bi](t) = t or

equivalently that dBi(t)dBi(t) = dt. In differential form, Bi(t) is

dBi(t) =
1

σi(t)

d∑
j=1

σij(t)dWj(t).
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Using the independence of the d-dimensional vector of Brownian motions, we get

dBi(t)dBi(t) =
1

σ2
i (t)

d∑
j=1

σ2
ij(t)dt =

∑d
j=1 σ

2
ij(t)∑d

j=1 σ
2
ij(t)

dt = dt (q.e.d.).

(ii) Again using independence we get

dBi(t)dBk(t) =
1

σi(t)σk(t)

d∑
j=1

σijσkj(t)dt = ρik(t)dt.

Exercise 4.16 (Creating independent Brownian motions to repre-
sent correlated ones)

In differential form and using matrix notation, we have dB(t) = A(t)dW (t) or dW (t) =

A−1(t)dB(t). We use the multidimensional Lévy theorem (a straight forward extension

of Theorem 4.6.5) to show that W (t) is a vector of independent Brownian motions. We

need to check the following conditions:

• Martingale property:

Since we can represent W (t) in terms of an integral constant plus and Itô integral

W (t) = W (0) +

∫ t

0

A−1(u)dB(u) ⇔ Wi(t) = Wi(0) +
m∑
j=1

∫ t

0

a−1
ij (u)dBj(u)

it follows that each element Wi(t) of this vector is a martingale (Theorem 4.3.1(iv)).

• Continuity:

By Theorem 4.3.1(i), Itô integrals have continuous sample paths.

• Starting at zero:

Similar to Exercise 4.13(iii), we can’t show that W (0) is a vector of zeros. In the

first point, we could choose the integration constant W (0) arbitrarily as only the

change dW (t) is relevant in the definition of B(t). However, the exercise is only

asking for the existence of a vector of Brownian motions W (t). Thus, by setting

W (0) = 0 we can find such a vector.
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• Unit quadratic variation and zero cross variation:

We need to show that eachWi(t) has unit quadratic variation but zero cross variation

with any other Wj(t) for j 6= i or equivalently that dW (t)dW T (t) = I where I is

the m×m identity matrix. This can be easily done using matrix notation. We get

dW (t)dW T (t) = A−1(t)dB(t)
(
A−1(t)dB(t)

)T
= A−1(t)dB(t)dBT (t)A−T (t)

= A−1(t)C(t)A−T (t)

= A−1(t)A(t)AT (t)A−T

= I (q.e.d.).

Exercise 4.17 (Instantaneous correlation)

(i) We first note that

B1 (t0 + ε)B2 (t0 + ε) = B1 (t0)B2 (t0) +

∫ t0+ε

t0

d (B1(s)B2(s)) .

By Corollary 4.6.3, we have for the differential of the product of the two Brownian

motions

d (B1(t)B2(t)) = B2(t)dB1(t) +B1(t)dB2(t) + dB1(t)dB2(t)

= B2(t)dB1(t) +B1(t)dB2(t) + ρdt.

Thus,

B1 (t0 + ε)B2 (t0 + ε) = B1 (t0)B2 (t0)+

∫ t0+ε

t0

B2(s)dB1(s)+

∫ t0+ε

t0

B1(s)dB2(s)+ρε

and
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E [B1 (t0 + ε)B2 (t0 + ε)| F (t0)] = B1 (t0)B2 (t0) + ρε

where we used that the two integrals are independent of the filtration F (t0) and

that by Theorem 4.3.1(iv) Itô integrals are martingales. Finally,

E [ (B1 (t0 + ε)−B1 (t0)) (B2 (t0 + ε)−B2 (t0))| F (t0)]

= E [B1 (t0 + ε)B2 (t0 + ε)| F (t0)]− E [B1 (t0 + ε)B2 (t0)| F (t0)]

−E [B1 (t0)B2 (t0 + ε)| F (t0)] + E [B1 (t0)B2 (t0)| F (t0)]

= B1 (t0)B2 (t0) + ρε−B2 (t0)E [B1 (t0 + ε)]

−B1 (t0)E [B2 (t0 + ε)] +B1 (t0)B2 (t0)

= ρε. (q.e.d.)

(ii) The means are

Mi(ε) = E [Xi (t0 + ε)−Xi (t0)| F (t0)]

=

∫ t0+ε

t0

Θidu

= Θiε (q.e.d.).

Where we again used that the Riemann integral is deterministic and that the Itô

integral is a martingale with zero expected value.

The variances are

Vi(ε) = E
[
(Xi (t0 + ε)−Xi (t0))2

∣∣F (t0)
]
−M2

i (ε)

= E

[(∫ t0+ε

t0

Θidu+

∫ t0+ε

t0

σidBi(u)

)2
]
−Θ2

i ε
2

=

(∫ t0+ε

t0

Θidu

)
E
[∫ t0+ε

t0

σidBi(u)

]
+ E

[(∫ t0+ε

t0

σidBi(u)

)2
]

=

∫ t0+ε

t0

σ2
i du

= σ2
i ε (q.e.d.).

16



Here, we used that the increment in the Itô processes is independent of the filtration

F (t0) in the second step. We can take the deterministic time integral out of the

expectation in the third step and again reply on the martingale property of the Itô

integral in the fourth step to eliminate this term. We further use the Itô isometry

(Theorem 4.3.1(v)) to transform the squared Itô integral into a Riemann integral in

the fourth step.

The covariance is

C(ε) = E [ (X1 (t0 + ε)−X1 (t0)) (X2 (t0 + ε)−X2 (t0))| F (t0)]−M1(ε)M2(ε)

= E
[(∫ t0+ε

t0

Θ1du+

∫ t0+ε

t0

σ1dB1(u)

)(∫ t0+ε

t0

Θ2du+

∫ t0+ε

t0

σ2dB2(u)

)]
−Θ1Θ2ε

2

=

(∫ t0+ε

t0

Θ1du

)
E
[∫ t0+ε

t0

σ2dB2(u)

]
+

(∫ t0+ε

t0

Θ2du

)
E
[∫ t0+ε

t0

σ1dB1(u)

]
+E

[(∫ t0+ε

t0

σ1dB1(u)

)(∫ t0+ε

t0

σ2dB2(u)

)]
= E

[(∫ t0+ε

t0

σ1dB1(u)

)(∫ t0+ε

t0

σ2dB2(u)

)]
In order to solve the remaining expectation, we first define for t ≥ t0

Ii(t) =

∫ t

t0

σidBi(u) ⇒ dIi(t) = σidBi(t)

By the Itô product rule, we have

d (I1(t)I2(t)) (t) = I2(t)dI1(t) + I1(t)dI2(t) + dI1(t)dI2(t)

or

I1(t)I2(t) = I1 (t0) I2 (t0) +

∫ t

t0

d (I1(u)I2(u))

=

∫ t

t0

I2(u)dI1(u) +

∫ t

t0

I1(u)dI2(u) +

∫ t

t0

ρσ1σ2du.

Thus,
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C(ε) = E [I1 (t0 + ε) I2 (t0 + ε)] =

∫ t0+ε

t0

ρσ1σ2du = ρσ1σ2ε. (q.e.d.).

Consequently, we have for the correlation between the increments of the Itô processes

C(ε)√
V1(ε)V2(ε)

=
ρσ1σ2ε√
σ2

1σ
2
2ε2

= ρ.

(iii) We have

Mi(ε) = E [Xi (t0 + ε)−X (t0)| F (t0)]

= E
[∫ t0+ε

t0

Θi(u)du+

∫ t0+ε

t0

σi(u)dBi(u)

∣∣∣∣F (t0)

]
= E

[∫ t0+ε

t0

Θi(u)du

∣∣∣∣F (t0)

]
.

We first note that by Definition 1.2.1, the real constant M can be considered a

(trivial) random variable as well. Here {M ∈ B} = Ω, i.e. we do not learn anything

about the particular outcome ω ∈ Ω by observing M . We now apply the dominated

convergence theorem (Theorem 1.4.9) to the sequence of random variables

I(ε) =
1

ε

∫ t0+ε

t0

Θi(u)du

that is bounded in absolute value by M . We have

lim
ε↓0

1

ε
Mi(ε) = lim

ε↓0
E [I(ε)| F (t0)]

= E
[

lim
ε↓0

I(ε)

∣∣∣∣F (t0)

]
= E

[
lim
ε↓0

1

ε
[I (0) + I ′ (0) ε+ o (ε)]

∣∣∣∣F (t0)

]
= E [Θi (t0)| F (t0)]

= Θi (t0) (q.e.d.).

Here, we used a Taylor series expansion of the integral around ε = 0 where I(0) = 0

and I ′(0) = Θi (t0).
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(iv) Similar to the hint, we define for t > t0

Yi(t) =

∫ t

t0

σi(u)dBi(u)

and get

Dij(ε) = E [ (Xi (t0 + ε)−Xi (t0)) (Xj (t0 + ε)−Xj (t0))| F (t0)]−Mi(ε)Mj(ε)

= E
[(

Yi (t0 + ε) +

∫ t0+ε

t0

Θi(u)du

)(
Yj (t0 + ε) +

∫ t0+ε

t0

Θj(u)du

)∣∣∣∣F (t0)

]
−Mi(ε)Mj(ε)

= E [Yi (t0 + ε)Yj (t0 + ε)| F (t0)] +

(∫ t0+ε

t0

Θj(u)du

)
E [Yi (t0 + ε)| F (t0)]

+

(∫ t0+ε

t0

Θi(u)du

)
E [Yj (t0 + ε)| F (t0)]

= E [Yi (t0 + ε)Yj (t0 + ε)| F (t0)]

Here, we followed the same main steps as in the derivation in (ii). We now apply

the Itô product rule again to compute the remaining expectation and get

Dij(ε) = E
[∫ t0+ε

t0

Yj(u)dYi(u) +

∫ t0+ε

t0

Yi(u)dYj(u) +

∫ t0+ε

t0

dYi(u)dYj(u)

∣∣∣∣F (t0)

]
= E

[∫ t0+ε

t0

ρij(u)σi(u)σj(u)du

∣∣∣∣F (t0)

]
.

We now apply the same limit argument as in (iii) and start by defining the sequence

of random variables

Iij(ε) =
1

ε

∫ t0+ε

t0

ρij(u)σi(u)σj(u)du

that is bounded in absolute value by M3. We get
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lim
ε↓0

1

ε
Dij(ε) = lim

ε↓0
E [Iij(ε)| F (t0)]

= E
[

lim
ε↓0

I(ε)

∣∣∣∣F (t0)

]
= E

[
lim
ε↓0

1

ε
[I(0) + I ′(0)ε+ o(ε)]

∣∣∣∣F (t0)

]
= E [ρij (t0)σi (t0)σj (t0)| F (t0)]

= ρij (t0)σi (t0)σj (t0) (q.e.d.).

(v) We showed this already implicitly in the derivation of the means and covariances.

We have

Dij(ε) = E [Iij(ε)| F (t0)]

= E [I(0) + I ′(0)ε+ o(ε)| F (t0)]

= E [ρij (t0)σi (t0)σj (t0) ε+ o(ε)| F (t0)]

= ρij (t0)σi (t0)σj (t0) ε+ o(ε)

=

Vi(ε) = σ2
k (t0) ε+ o(ε) for i = j = k

C(ε) = ρ (t0)σ1 (t0)σ2 (t0) ε+ o(ε) for i 6= j

(q.e.d.).

(vi) Finally,

lim
ε↓0

C(ε)√
V1(ε)V2(ε)

= lim
ε↓0

ρ (t0)σ1 (t0)σ2 (t0) ε+ o(ε)√
(σ2

1 (t0) ε+ o(ε)) (σ2
2 (t0) ε+ o(ε))

= lim
ε↓0

ρ (t0)σ1 (t0)σ2 (t0)√
σ2

1 (t0)σ2
2 (t0)

+ o(ε)

= ρ (t0) (q.e.d.).

Exercise 4.18

(i) Let f(t, x) = exp
{
−θx−

(
r + 1

2
θ2
)
t
}

. We have

∂f

∂t
= −

(
r +

1

2
θ2

)
f(t, x),

∂f

∂x
= −θf(t, x),

∂2f

∂x2
= θ2f(t, x).

Itô’s lemma yields
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dζ(t) = df(t,W (t))

= −
(
r +

1

2
θ2

)
ζ(t)dt− θζ(t)dW (t) +

1

2
θ2ζ(t)dt

= −rζ(t)dt− θζ(t)dW (t) (q.e.d.).

(ii) By Itô’s product rule (Corollary 4.6.3) we get

d (ζ(t)X(t)) = ζ(t)dX(t) +X(t)dζ(t) + dX(t)dζ(t)

= rζ(t)X(t)dt+ ζ(t)∆(t)(α− r)S(t)dt+ ζ(t)∆(t)σS(t)dW (t)

−θζ(t)X(t)dW (t)− rζ(t)X(t)dt− θζ(t)∆(t)σS(t)dt

= ζ(t) (∆(t)σS(t)− θX(t)) dW (t). (7)

In the last step, we have used the fact that θσ = α − r. Equation (7) shows that

ζ(t)X(t) is a martingale, since all dt-terms vanish in the differential. Equivalently, we

could express ζ(t)X(t) by a single Itô integral. Since all Itô integrals are martingales,

so is ζ(t)X(t)

ζ(t)X(t) = ζ(0)X(0) +

∫ t

0

ζ(s) (∆(s)σS(s)− θX(s)) dW (s).

(iii) First, note that

ζ(0) = exp {−θW (0)} = 1.

Now let ∆(t) be an adapted portfolio process such that, X(T ) = V (T ), i.e. the

final value of the trading strategy is equal to the final value of the F(T ) measurable

random variable V (T ). As has been shown in (ii), ζ(t)X(t) is a martingale, i.e.

E [ζ(t)X(t)|F(s)] = ζ(s)X(s), s ≤ t.

We obtain

X(0) = ζ(0)X(0) = E [ζ(T )X(T )] = E [ζ(T )V (T )] .
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Exercise 4.19

(i) By Lévy’s theorem it is sufficient to show that B(t) is a continuous martingale start-

ing at zero with unit quadratic variation in order to establish that it is a Brownian

motion. We first note that B(t) is an Itô integral with B(0) = 0. By Theorem 4.3.1,

Itô integrals are continuous martingales. The quadratic variation of B(t) is

(dB(t))2 = (sign (W (t)) dW (t))2 = sign2 (W (t)) (dW (t))2 = dt

and it follows that it is a Brownian motion.

(ii) We have

d (B(t)W (t)) = B(t)dW (t) +W (t)dB(t) + dB(t)dW (t)

= B(t)dW (t) +W (t)sign (W (t)) dW (t) + sign (W (t)) dt

and since B(0)W (0) = 0 we get

B(t)W (t) =

∫ t

0

B(s)dW (s) +

∫ t

0

W (s)sign (W (s)) dW (s) +

∫ t

0

sign (W (s)) ds

Since Itô integrals are martingales it follows that

E [B(t)W (t)] = E
[∫ t

0

sign (W (s)) ds

]
=

∫ t

0

E [sign (W (s))] ds = 0.

In the last step, we have used that with probability one half, sign (W (t)) = ±1 for

t > 0.

(iii) Let f(t, x) = x2. We have

∂f

∂t
= 0,

∂f

∂x
= 2x,

∂2f

∂x2
= 2.

Using the Itô formula to compute the differential of dW 2(t) yields

dW 2(t) = 2W (t)dW (t) + dt (q.e.d.)
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(iv) We have

d
(
B(t)W 2(t)

)
= B(t)dW 2(t) +W 2(t)dB(t) + dB(t)dW 2(t)

= 2B(t)W (t)dW (t) +B(t)dt+W 2(t)sign (W (t)) dW (t)

+2W (t)sign (W (t)) dt.

Integrating both sides yields

B(t)W 2(t) =

∫ t

0

2B(s)W (s)dW (s) +

∫ t

0

B(s)ds+

∫ t

0

W 2(s)sign (W (s)) dW (s)

+

∫ t

0

2W (s)sign (W (s)) ds.

We take expectation on both sides and again use the martingale property of the Itô

integral to get

E
[
B(t)W 2(t)

]
= E

[∫ t

0

B(s)ds+

∫ t

0

2W (s)sign (W (s)) ds

]
(8)

In order to evaluate the first Riemann integral, we set f(t, x) = tx such that ft(t, x) =

x and fx(t, x) = t. We apply the Itô formula to obtain the differential of tW (t) as

d (tB(t)) = B(t)dt+ tdB(t).

Integrating and rearranging yields

∫ T

0

B(t)dt = TB(T )−
∫ T

0

tdB(t) =

∫ T

0

(T − t)dB(t).

The last term is an Itô integral of a deterministic integrand and thus normally

distributed with zero mean and variance

∫ T

0

(T − t)2dt = −1

3
(T − t)3

∣∣∣∣T
0

=
1

3
T 3.

It follows that the first term in Equation (8) is zero and we get

E
[
B(t)W 2(t)

]
= E

[∫ t

0

2W (s)sign (W (s)) ds

]
= E

[∫ t

0

2 |W (s)| ds
]
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It is obvious, that the expected value is strictly positive for t > 0 since the integrand

is non-negative and almost surely strictly positive. If B(t) andW (t) are independent,

then by Theorem 2.2.5 any two function f (B(t)) and g (W (t)) are independent. Now

let g (B(t)) = B(t) and f (W (t)) = W 2(t) then by Theorem 2.2.7 independence

implies that E [B(t)W 2(t)] = E [B(t)]E [W 2(t)]. But since E [B(t)] = 0 we would

require E [B(t)W 2(t)] = 0. We have shown above that E [B(t)W 2(t)] > 0 and thus

B(t) and W (t) are not independent.

Exercise 4.20 (Local time)

(i)

f ′(x) =


1 if x > K

undefined if x = K

0 x < K

f ′′(x) =

0 if x 6= K

undefined if x = K

(ii)

f(W (T )) = f(W (0)) +

∫ T

0

I{W (t)>K}dW (t) (9)

Using that by Theorem 3.3.2(i), W (T ) ∼ N (0, T ), we can compute the expected

value of the right hand side as
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E [f(W (T ))] = E
[
(W (T )−K)+]

=

∫ ∞
−∞

(√
Tx−K

)+

N ′(x)dx

=

∫ ∞
K√
T

(√
Tx−K

)
N ′(x)dx

=
√
T

∫ ∞
K√
T

xN ′(x)dx−KN
(
− K√

T

)

=

√
T

2π

∫ ∞
K√
T

xe−
x2

2 dx−KN
(
− K√

T

)

= −
√

T

2π
e−

x2

2

∣∣∣∣∣
∞

K√
T

−KN
(
− K√

T

)

=

√
T

2π
e−

K2

2T −KN
(
− K√

T

)
Since the Itô integral is a martingale starting at zero, it has zero expected value and

we get for the right hand side

E [f(W (0))] + E
[∫ T

0

I{W (t)>K}dW (t)

]
= E

[
(W (0)−K)+

]
= (0−K)+

= 0.

This shows that Equation (9) does not hold.

(iii) The answer to this question is pretty much given in the hints already.

f ′(x) =


0 if x ≤ K − 1

2n

n(x−K) + 1
2

if K − 1
2n
≤ x ≤ K + 1

2n

1 if x ≥ K + 1
2n

f ′′(x) =


0 if x < K − 1

2n

n if K − 1
2n
< x < K + 1

2n

0 if x > K + 1
2n
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(iv) Similar to (iii), there is not too much to add to the hints. We first note that the

intervals of the piecewise function definition have limits

lim
n→∞

[
0, K − 1

2n

]
= [0, K)

lim
n→∞

[
K − 1

2n
,K +

1

2n

]
= K

lim
n→∞

[
K +

1

2n
,∞
)

= (K,∞).

Thus,

lim
n→∞

fn(x) =

0 if x ≤ K

x−K if x ≥ K

= (x−K)+

lim
n→∞

f ′n(x) =


0 if x < K

1
2

if x = K

1 if x > K

. (10)

(v) Let M(T ) = max0≤t≤T W (T ) be the maximum of a fixed Brownian motion path ω

during the time interval [0, T ]. By assumption, M(T ) < K and by definition

LK(T ) = lim
n→∞

n

∫ T

0

I{W (t)∈(K− 1
2n
,K+ 1

2n)}dt.

Now, from M(T ) < K it follows that there exists an n0 such that K− 1
2n
> M(T ) for

all n ≥ n0. Consequently, for all n ≥ n0, the indicator function inside the integral

evaluates to zero for all t ∈ [0, T ] and we get LK(T ) = 0.

(vi) Taking expectation on both sides and using that by Theorem 4.3.1(iv) the Itô integral

is a martingale with zero expected value yields

E [LK(T )] = E
[
(W (T )−K)+

]
> 0,
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where the inequality follows from our result in (ii). Although it is not immediately

obvious from the final result, it is enough to note that by the normal distribution of

W (T ) values of W (T ) > K have a strictly positive probability for all finite levels of

K and thus the expectation is strictly positive as well. Now,

P {LK(T ) = 0} = 1 ⇒ E [LK(T ) = 0]

and just showed that the implication does not hold. Thus, by contradiction we

cannot have that P {LK(T ) = 0} = 1.

Exercise 4.21 (Stop-loss start-gain paradox)

(i) The stop-loss start-gain strategy involves holding a long position in one share when-

ever the stock price strictly exceeds the strike price and holding no position other-

wise. The crucial point is, that buys and sells are not made at the same price and

thus the hedger incurs a cost every time he enters and unwinds the stock position.

To make it clear, assume that we by one stock whenever the price level K + ε is

crossed from below (and we had no position before) and sell one stock whenever the

price level K is crossed from above (and we were long one stock before). Building up

and subsequently unwinding the stock position thus yields to a loss of ε. Since the

mathematical model of a geometric Brownian motion is a process with continuous

sample paths, ε can theoretically made arbitrarily small. However, smaller values of

ε lead to more frequent transactions.

Real world stock prices however don’t take values in R but are usually quoted in full

USD-cents. Furthermore, they don’t move continuously but jump. Thus, each time

the stock price crosses the strike price the hedger encounters a friction of at least

one USD-cent. Furthermore, the strategy ignores transaction cost that can become

very significant for high number of buys and sells in the stock.

(ii) Taking expectation and using that by Theorem 4.3.1(i) the Itô integral is a martin-

gale with zero expected value yields E [X(T )] = 0. However,
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∫ ∞
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=

∫ ∞
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2σ

2

σ
√
T

(
S(0) exp

{
−1

2
σ2T + σ

√
Tx

}
−K

)
N ′(x)dx

> 0.

From the second equation and the properties of the normal distribution it is obvious

that the integrand is non-negative everywhere and that it takes strictly positive

values for some values of x. Thus, the expected value is strictly positive as well. In

conclusion

P
(
X(T ) = (S(T )−K)+

)
< 1,

i.e. there are some paths where the stop-loss start-gain strategy does replicate the

option payoff (i.e. all paths where the maximum stock price over the interval [0, T ]

is strictly less than K). However, since the expected value of the payoff of the

strategy does not agree with the expected value of the option payoff, we do not have

X(T ) = (S(T ) −K)+ almost surely. This also follows from the result on the local

time in Exercise 4.21. Since a Brownian motion spends a non-zero time at any level

with positive probability, so does it at the strike K. But once the strike is crossed,

the hedger incurs a cost and the exact replication fails.
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