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Exercise 6.1

(i) Let

A(u) =

∫ u

t

σ(v)dW (v) +

∫ u

t

(
b(v)− 1

2
σ2(v)

)
dv

such that Z(u) = exp {A(u)}. For u = t, both integrals evaluate to zero and thus

A(t) = 0 and Z(t) = 1. Let f(u, x) = ex with

∂f

∂u
= 0,

∂f

∂x
= ex,

∂2f

∂x2
= ex.

Applying Itô’s lemma yields for u ≥ t

dZ(u) = df(u,A(t))

= Z(u)dA(u) +
1

2
Z(u)dA(u)dA(u)

=

(
b(u)− 1

2
σ2(u)

)
Z(u)du+ σ(u)Z(u)dW (u) +

1

2
σ2(u)Z(u)du

= b(u)Z(u)du+ σ(u)Z(u)dW (u) (q.e.d.).

(ii) By the Itô product rule, we have
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dX(u) = d (Y (u)Z(u))

= Y (u)dZ(u) + Z(u)dY (u) + dY (u)dZ(u)

= b(u)X(u)du+ σ(u)X(u)dW (u) + (a(u)− σ(u)γ(u)) du+ γ(u)dW (u) + σ(u)γ(u)du

= (a(u) + b(u)X(u)) du+ (γ(u) + σ(u)X(u)) dW (u) (q.e.d.).

Finally, using the previous result for Y (t) and Z(t) we see that X(t) = Y (t)Z(t) = x.

Exercise 6.2 (No-Arbitrage Derivation of Bond-Pricing Equation)

(i) The self-financing portfolio process X(t) is given by

dX(t) = ∆1(t)df (t, R(t), T1) + ∆2(t)df (t, R(t), T2)

+R(t) (X(t)−∆1(t)f (t, R(t), T1)−∆2(t)f (t, R(t), T2)) dt.

Thus, by the Itô product rule,

d(D(t)X(t)) = D(t)dX(t) +X(t)dD(t) + dD(t)dX(t)

= ∆1(t)D(t)df (t, R(t), T1) + ∆2(t)D(t)df (t, R(t), T2)

+R(t)D(t) (X(t)−∆1(t)f (t, R(t), T1)−∆2(t)f (t, R(t), T2)) dt

−R(t)D(t)X(t)dt

= ∆1(t)D(t) [−R(t)f (t, R(t), T1) dt+ df (t, R(t), T1)]

+∆2(t)D(t) [−R(t)f (t, R(t), T2) dt+ df (t, R(t), T2)] .

Here, we used that

dD(t) = −R(t)D(t)dt

has zero quadratic variation such that the cross-variation term in the Itô differential

drops out. Assuming that the zero-coupon bond price is smooth enough such that

the Itô formula can be applied, then its differential is given by
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df(t, R(t), T ) = ft(t, R(t), T )dt+ fr(t, R(t), T )dR(t) +
1

2
frr(t, R(t), T )dR(t)dR(t)

= ft(t, R(t), T )dt+ α(t, R(t))fr(t, R(t), T )dt+ γ(t, R(t))fr(t, R(t), T )dW (t)

+
1

2
γ2(t, R(t))frr(t, R(t), T )dt.

Combining this with the previously obtained dynamics of the discounted portfolio

value yields

d(D(t)X(t)) = ∆1(t)D(t) [−R(t)f (t, R(t), T1) + ft (t, R(t), T1) + α(t, R(t))fr (t, R(t), T1)

+
1

2
γ2(t, R(t))frr (t, R(t), T1)

]
dt+ ∆2D(t) [−R(t)f (t, R(t), T2)

+ft (t, R(t), T2) + α(t, R(t))fr (t, R(t), T2) +
1

2
γ2(t, R(t))frr (t, R(t), T2)

]
dt

+D(t)γ(t, R(t)) [∆1(t)fr (t, R(t), T1) + ∆2(t)fr (t, R(t), T2)] dW (t).

This is the first equality in Equation (6.9.4). To get the second equality, we simply

substitute β (t, R(t), T ) and obtain

d(D(t)X(t)) = ∆1(t)D(t) [α(t, R(t))− β (t, R(t), T1)] fr (t, R(t), T1) dt

+∆2(t)D(t) [α(t, R(t)− β (t, R(t), T2)] fr (t, R(t), T2) dt

+D(t)γ(t, R(t)) [∆1(t)fr (t, R(t), T1) + ∆2(t)fr (t, R(t), T2)] dW (t) (q.e.d.).

(ii) We first note that by construction of the trading strategy

∆1(t)fr (t, R(t), T1) + ∆2(t)f2 (t, R(t), T2)

= S(t)fr (t, R(t), T1) fr (r, R(t), T2)− S(t)fr (t, R(t), T1) fr (r, R(t), T2)

= 0.

Thus, the diffusion term in the dynamics of D(t)X(t) vanishes and the portfolio is

instantaneously risk-free. Furthermore,
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∆1(t)D(t) [α(t, R(t))− β (t, R(t), T1)] fr (t, R(t), T1)

+∆2(t)D(t) [α(t, R(t)− β (t, R(t), T2)] fr (t, R(t), T2)

= S(t)D(t) [β (t, R(t), T2)− β (t, R(t), T1)] fr (t, R(t), T1) fr (t, R(t), T2)

≥ 0.

The last inequality follows from the definition of S(t). For no-arbitrage to exist,

the discounted wealth process of a risk-free portfolio has to be a martingale and

thus, the drift has to vanish. This is only the case if β (t, R(t), T2) = β (t, R(t), T1).

Since T1 and T2 are arbitrary maturities, we conclude that β(t, R(t), T ) has to be

independent of T .

(iii) The discounted portfolio process immediately follows from the result obtained in (i)

by setting T1 = T , ∆1(t) = ∆(t) and ∆2(t) = 0 for all t ≥ 0. Then

d(D(t)X(t)) = ∆(t)D(t) [−R(t)f(t, R(t), T ) + ft(t, R(t), T ) + α(t, R(t))fr(t, R(t), T )

+
1

2
γ2(t, R(t))frr(t, R(t), T )

]
dt+D(t)γ(t, R(t))∆(t)fr(t, R(t), T )dW (t).

If fr(t, R(t), T ) = 0, then the diffusion term vanishes. For no-arbitrage to exist, the

change in the discounted portfolio value must be zero as well. Otherwise a risk-free

profit could be made by taking a long or short position in the risk-free portfolio.

Consequently,

−R(t)f(t, R(t), T ) + ft(t, R(t), T ) +
1

2
γ2(t, R(t))frr(t, R(t), T ) = 0 (q.e.d.).

Exercise 6.6 (Moment-Generating Function for Cox-Ingersoll-Ross

Process)

(i) Let f(t, x) = e
1
2
btx where

∂f

∂t
=

1

2
be

1
2
btx,

∂f

∂x
= e

1
2
bt,

∂2f

∂x2
= 0.
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When applying Itô’s formula to compute the differential of f(t,Xj(t)), then the

geometric drift drops out and we obtain

d
(
e

1
2
btXj(t)

)
= be

1
2
btXj(t)−

1

2
be

1
2
btXj(t)dt+

1

2
σe

1
2
btdWj(t)

=
1

2
σe

1
2
btdWj(t).

Integrating over [0, t] yields

e
1
2
btXj(t) = Xj(0) +

1

2
σ

∫ t

0

e
1
2
budWj(u)

and thus

Xj(t) = e−
1
2
bt

[
Xj(0) +

1

2
σ

∫ t

0

e
1
2
budWj(u)

]
(q.e.d.).

The expected value is

E [Xj(t)] = e−
1
2
btXj(0) +

1

2
σe−

1
2
btE
[∫ t

0

e
1
2
budWj(u)

]
= e−

1
2
btXj(0),

where we used that by Theorem 4.3.1, the Itô integral is a martingale starting at

zero. The variance is

Var [Xj(t)] = Var

[
1

2
σe−

1
2
bt

∫ t

0

e
1
2
budWj(u)

]
=

1

4
σ2e−btVar

[∫ t

0

e
1
2
budWj(u)

]
=

1

4
σ2e−btE

[(∫ t

0

e
1
2
budWj(u)

)2
]

=
1

4
σ2e−bt

∫ t

0

ebudu

=
1

4b
σ2e−btebu

∣∣∣∣u=t
u=0

=
1

4b
σ2
(
1− e−bt

)
.
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In the first equality, we used that the term e−
1
2
btXj(0) is a constant and thus does

not contribute to the variance of Xj(t). In the third equality we again used that the

Itô integral is a martingale starting at zero and fourth equality is a consequence of

the Itô isometry (Theorem 4.3.1). Finally, by Theorem 4.4.9, the Itô integral of a

deterministic integrand is normally distributed and we conclude that

Xj(t) ∼ N
(
e−

1
2
btXj(0),

1

4b
σ2
(
1− e−bt

))
(q.e.d.).

(ii) Let f (t, x1, x2, . . . , xd) =
∑d

j=1 x
2
j where

∂f

∂t
= 0,

∂f

∂xj
= 2xj,

∂2f

∂x2j
= 2,

∂2f

∂xj, ∂xk
= 0.

An application of the multidimensional Itô formula yields

dR(t) = df (t,X1(t), X2(t), . . . , Xd(t))

=
d∑
j=1

2Xj(t)dXj(t) +
d∑
j=1

dXj(t)dXj(t)

=
d∑
j=1

[(
1

4
σ2 − bX2

j (t)

)
dt+ σXj(t)dWj(t)

]

=

(
1

4
σ2d− b

d∑
j=1

X2
j (t)

)
dt+ σ

d∑
j=1

Xj(t)dWj(t)

= (a− bR(t))dt+ σ

d∑
j=1

Xj(t)dWj(t).

Next, we show that the process

B(t) =
d∑
j=1

∫ t

0

Xj(s)√
R(s)

dWj(s)

is a P-Brownian motion. First observe that by Theorem 4.3.1, each of the Itô

integrals in the definition of B(t) starts at zero, is a martingale and has continuous

sample paths. As a sum over these Itô integrals, the process B(t) inherits these

properties. Furthermore,
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dB(t)dB(t) =
1

R(t)

d∑
j=1

X2
j (t)dt

= dt,

where we used that the Brownian motions W1(t),W2(t), . . . ,Wd(t) are independent.

By Lévy’s characterization of the Brownian motion (Theorem 4.6.4), it follows that

B(t) is a P-Brownian motion. Consequently,

dR(t) = (a− bR(t))dt+ σ
√
R(t)dB(t) (q.e.d.).

(iii) The random variables Xj(t) and Xk(t) are independent for j 6= k since the only

source of randomness in the definition of Xj(t) is Wj(t) for any j and the Brownian

motions Wj(t) and Wk(t) are independent for j 6= k. The mean and standard

deviation are obtained by substituting for Xj(0) in the result obtained in part (i).

We get

Xj(t) ∼ N (µ(t), v(t)) ,

where

µ(t) = e−
1
2
bt

√
R(0)

d
, v(t) =

1

4b
σ2
(
1− e−bt

)
(q.e.d.).

(iv) Following the hint and using that Xj(t) is normally distributed, we get
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E
[
exp

{
uX2

j (t)
}]

=

∫ ∞
−∞

exp
{
ux2
} 1√

2πv(t)
exp

{
−(x− µ(t))2

2v(t)

}
dx

=

∫ ∞
−∞

exp
{
ux2
} 1√

2πv(t)
exp

{
−x

2 − 2xµ(t) + µ2(t)

2v(t)

}
dx

=

∫ ∞
−∞

1√
2πv(t)

exp

{
−x

2(1− 2uv(t))− 2xµ(t) + µ2(t)

2v(t)

}
dx

= exp

{
−µ

2(t)

2v(t)

}
∫ ∞
−∞

1√
2πv(t)

exp

{
−x

2(1− 2uv(t))− 2xµ(t)± µ2(t)/(1− 2uv(t))2

2v(t)

}
dx

= exp

{
−µ

2(t)(1− 1/(1− 2uv(t)))

2v(t)

}
∫ ∞
−∞

1√
2πv(t)

exp

−
(
x
√

1− 2uv(t)− µ(t)/
√

1− 2uv(t)
)2

2v(t)

 dx.

= exp

{
µ2(t)u

1− 2uv(t)

}
∫ ∞
−∞

1√
2πv(t)

exp

{
−(1− 2uv(t)) (x− µ(t)/(1− 2uv(t)))2

2v(t)

}
dx.

=
1√

1− 2uv(t)
exp

{
µ2(t)u

1− 2uv(t)

}
∫ ∞
−∞

√
1− 2uv(t)

2πv(t)
exp

{
−(x− µ(t)/(1− 2uv(t)))2

2v(t)/(1− 2uv(t))

}
dx.

The integrand is the density of a normal random variable with distribution

N
(

µ(t)

1− 2uv(t)
,

v(t)

1− 2uv(t)

)
and thus the integral evaluates to one. We get

E
[
exp

{
uX2

j (t)
}]

=
1√

1− 2uv(t)
exp

{
µ2(t)u

1− 2uv(t)

}
(q.e.d.).

This expression is only well defined if

1− 2uv(t) > 0 ⇔ u <
1

2v(t)
.
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(v) We have

E [exp {uR(t)}] = E

[
exp

{
u

d∑
i=1

Xj(t)

}]

= E

[
d∏
j=1

exp {uXj(t)}

]

=
d∏
j=1

E [exp {uXj(t)}]

= (E [exp {uXj(t)}])d

=

(
1

1− 2uv(t)

)d/2
exp

{
dµ2(t)u

1− 2uv(t)

}
,

where we used that the Xj(t) are independent and identically distributed in the

third and fourth equality. Alternatively, we could have directly applied Theorem

2.2.7 which states that the joint moment generating function factors for sums of

independent random variables. Now substituting for µ(t) and d yields

E [exp {uR(t)}] =

(
1

1− 2uv(t)

)2a/σ2

exp

{
e−

1
2
btR(0)u

1− 2uv(t)

}
(q.e.d.).

Exercise 6.8 (Kolmogorov Backward Equation)

Let h(y) be a Borel measurable function and define

g(t, x) = Et,x [h(X(T ))| F(s)] =

∫ ∞
0

h(y)p(t, T, x, y)dy.

The lower bound at zero is due to the assumption of X(t) being strictly positive. By

Lemma 6.4.2, g(t,X(t)) is a martingale. Its partial derivatives are

gt(t, x) =

∫ ∞
0

h(y)pt(t, T, x, y)dy

gx(t, x) =

∫ ∞
0

h(y)px(t, T, x, y)dy

gxx(t, x) =

∫ ∞
0

h(y)pxx(t, T, x, y)dy

The differential of g(t, x) is
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dg(t,X(t)) = gt(t,X(t))dt+ gx(t,X(t))dX(t) +
1

2
gxx(t,X(t))(dX(t))2

= gt(t,X(t))dt+ β(t,X(t))gx(t,X(t))dt+ γ(t,X(t))gx(t,X(t))dW (t)

+
1

2
γ2(t,X(t))gxx(t,X(t))dt

Since g(t,X(t)) is a martingale, the drift term has to be equal to zero

gt(t,X(t)) + β(t,X(t))gx(t,X(t)) +
1

2
γ2(t,X(t))gxx(t,X(t)) = 0

Substituting the derivatives yields

0 =

∫ ∞
0

h(y)

[
pt(t, T, x, y) + β(t,X(t))px(t, T, x, y) +

1

2
γ2(t,X(t))pxx(t, T, x, y)

]
dy

In order for this equation to hold for all values of h(y) > 0, we require

−pt(t, T, x, y) = β(t,X(t))px(t, T, x, y) +
1

2
γ2(t,X(t))pxx(t, T, x, y) (q.e.d.)

Exercise 6.10 (Implying the Volatility Surface)

(i) We get

−
∫ ∞
K

(y −K)
∂

∂y
(ryp̃(0, T, x, y)) dy

= −(y −K)ryp̃(0, T, x, y)|y=∞y=K +

∫ ∞
K

ryp̃(0, T, x, y)dy

=

∫ ∞
K

ryp̃(0, T, x, y)dy (q.e.d.).

Here, we used the assumption given in Equation (6.9.55) in the last step.

(ii) We get
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1

2

∫ ∞
K

(y −K)
∂2

∂y2
(
σ2(T, y)y2p̃(0, T, x, y)

)
dy

=
1

2
(y −K)

∂

∂y

(
σ2(T, y)y2p̃(0, T, x, y)

)∣∣∣∣y=∞
y=K

− 1

2

∫ ∞
K

∂

∂y

(
σ2(T, y)y2p̃(0, T, x, y)

)
dy

= −1

2

∫ ∞
K

∂

∂y

(
σ2(T, y)y2p̃(0, T, x, y)

)
dy

= −1

2
σ2(T, y)y2p̃(0, T, x, y)

∣∣∣∣y=∞
y=K

=
1

2
σ2(T,K)K2p̃(0, T, x,K) (q.e.d.).

Here, we used the assumption given in Equation (6.9.57) in the second equality and

the assumption given in Equation (6.9.60) in the fourth equality.

(iii) Starting from Equation (6.9.53), we get

cT (0, T, x,K)

= −rc(0, T, x,K) + e−rT
∫ ∞
K

(y −K)p̃T (0, T, x, y)dy

= −re−rT
∫ ∞
K

(y −K)p̃(0, T, x, y)dy

+e−rT
∫ ∞
K

(y −K)

(
− ∂

∂y

(
ryp̃(0, T, x, y) +

1

2

∂2

∂y2
σ2(T, y)y2p̃(0, T, x, y)

))
dy

= −re−rT
∫ ∞
K

(y −K)p̃(0, T, x, y)dy + re−rT
∫ ∞
K

yp̃(0, T, x, y)dy

+
1

2
e−rTσ2(T,K)K2p̃(0, T, x,K)

= rKe−rT
∫ ∞
K

p̃(0, T, x, y)dy +
1

2
e−rTσ2(T,K)K2p̃(0, T, x,K).

This is the first equality in Equation (6.9.59). Here, we used the Kolmogorov forward

equation from Equation (6.9.51) in the second equality and the results from (i) and

(ii) in the third. Next, we use the result from Exercise 5.9, namely that the risk-

neutral distribution can be represented as

p̃(0, T, x,K) = erT cKK(0, T, x,K).

Thus
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cT (0, T, x,K)

= rK

∫ ∞
K

cKK(0, T, x, y)dy +
1

2
σ2(T,K)K2cKK(0, T, x,K)

= rKcK(0, T, x, y)|y=∞y=K +
1

2
σ2(T,K)K2cKK(0, T, x,K)

= −rKcK(0, T, x,K) +
1

2
σ2(T,K)K2cKK(0, T, x,K) (q.e.d.),

where we used that

lim
K→∞

c(0, T, x,K) = 0

and thus

lim
K→∞

cKK(0, T, x,K) = 0.
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