Exercise 2.6

Let 1 < s <t
E[L| Fs] = Is.
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< N be two indices in the range 1,...,N. We need to show that

In the following proof, we will assume that s < ¢ holds, for s = ¢

the identity obviously follows straight away:.
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= I, q.ed.

We have use the following properties in the different steps of this proof

3. the first sum is F;-measurable, the second sum is independent of F;
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and



4. tower law of conditional expectation

5. A; is Fj-measurable
6. E[M;+1 — M;| Fj| = E[M;+1| Fj] — M; = M; — M; = 0 since M; is a martingale
Exercise 2.9

The stock-price and interest-rate tree takes the following form'
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(i) The tree representation already suggests that the risk-neutral probabilities at ¢ = 1

are path-dependent since the interest-rate is stochastic. We thus start by computing

Po, p1(H) and py (7).
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We can then compute the risk-neutral ending node probabilities P(w;ws,).

(ii) The ending-node values V(wjwy) = max {Se(wiwe) — 7,0} are
Vo(HH) =5, Vi(HT) = Vy(TH) =1, Vo(TT) = 0

We can then compute Vi(H), Vi(T') and Vj by
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