Stochastic Calculus for Finance I

some Solutions to Chapter V

Matthias Thul*

Last Update: June 19, 2015

Exercise 5.5

(i) We know that the symmetric random walk M_n is a martingale. Assume that we first reach the level m at time τ_m ≤ n. Due to the martingale property and conditional on reaching level m at τ_m, all paths leading to levels M_n = m - α have the same probability as the paths leading to M_n = m + α with alpha ∈ {0, 2, ..., n - τ_m}. Obviously, all paths leading to M_n + α also have τ_m ≤ n. Thus, the two sets {W_m ≥ m ∧ W_n = m - α} and {τ_m ≤ n ∧ W_n = m - α} are equivalent and have the same probability as {W_n = m + α}. Now let b = m - α, then α = m - b and we get

$$\mathbb{P}\left\{\tau_m \le n \land W_n = b\right\} = \mathbb{P}\left\{W_n = 2m - b\right\}$$

The values of M_n are binomially distributed with

$$\mathbb{P}\left\{M_n = k\right\} = \binom{n}{k} \left(\frac{1}{2}\right)^n$$

where $k \in \{0, 1, ..., n\}$. At step n, $M_n = n$ is thus represented by either $k_{M_n=n} = 0$ or $k_{M_n=n} = n$. Similarly, $M_n = -n$ refers to the index $k_{M_n=-n} = n - k_{M_n=n}$. Without loss of generality, we choose $k_{M_n=n} = n$. I.e. k represents the number of up-steps. We then get for k and n - k

^{*}The author can be contacted via <<firstname>>.<<lastname>>@gmail.com and http://www.matthiasthul.com.

$$k = \frac{n+2m-b}{2} = \frac{n-b}{2} + m$$
$$n-k = \frac{n+b}{2} - m$$

Plugging back into the binomial density and using all previous results yields

$$\mathbb{P}\left\{W_m \ge m \land W_n = b\right\} = \left(\frac{n!}{\left(\frac{n-b}{2} + m\right)! \left(\frac{n+b}{2} - m\right)!}\right) \left(\frac{1}{2}\right)^n \quad \text{q.e.d.}$$

(ii) If the random walk is asymmetric, then it is no longer a martingale. Conditional on $\tau_m \leq n$, the paths leading to $W_n = m - \alpha$ have probability

$$\mathbb{P}\left\{\tau_m \le n \land W_n = m - \alpha\right\} = \mathbb{P}\left\{W_{\tau_m} = m\right\} \begin{pmatrix} \hat{n} \\ \hat{k} \end{pmatrix} p^{\hat{k}} q^{(\hat{n} - \hat{k})}$$

Here, $\hat{n} = n - \tau_n$ is the number of steps between the first hitting time τ_m of level m and n. Again, we have used the fact that $\alpha \in \{0, 2, \ldots, n - \tau_m\}$. $\alpha = 0$ is thus equivalent to an equal amount of up- and down-steps between τ_m and n and thus translates into $\hat{k} = \frac{n-\tau_m}{2}$. Similarly, $\alpha = n - \tau_m$ translates into $\hat{k} = 0$. In general, we thus get for the number of up-steps \hat{k} required from M_{τ_m} to $m - \alpha$: $\hat{k} = \frac{n-\tau_m-\alpha}{2}$.

We now analyse the probability of the reflected path. Conditional on $\tau_m \leq n$, the paths leading to $W_n = m + \alpha$ have probability

$$\mathbb{P}\left\{W_n = m + \alpha\right\} = \mathbb{P}\left\{\tau_m \le n \land W_n = m + \alpha\right\} = \mathbb{P}\left\{W_{\tau_m} = m\right\} \begin{pmatrix} \tilde{n} \\ \tilde{k} \end{pmatrix} p^{\hat{k}} q^{(\hat{n} - \hat{k})}$$

Here, $\tilde{n} = \hat{n}$ and by similar arguments as used to construct \hat{k} , we find that $\tilde{k} = \frac{n-\tau_m+\alpha}{2}$. We then see that

$$\binom{\hat{n}}{\hat{k}} = \frac{\hat{n}!}{\hat{k}!(\hat{n}-\hat{k})!} = \frac{(n-\tau)!}{\left(\frac{n-\tau_m-\alpha}{2}\right)!\left(\frac{n-\tau_m+\alpha}{2}\right)!} = \frac{\tilde{n}}{(\tilde{n}-\tilde{k})!\tilde{k}!} = \binom{\tilde{n}}{\tilde{k}}$$

and

$$p^{\tilde{k}}q^{(\tilde{n}-\tilde{k})} = p^{\left(\frac{\tilde{n}+\alpha}{2}\right)}q^{\left(\frac{\tilde{n}-\alpha}{2}\right)} = p^{\left(\frac{\tilde{n}-\alpha}{2}\right)}p^{\alpha}q^{\left(\frac{\tilde{n}+\alpha}{2}\right)}q^{-\alpha} = \left(p^{\alpha}q^{-\alpha}\right)\left(p^{\hat{k}}q^{\hat{n}-\hat{k}}\right)$$

Thus

$$\mathbb{P} \{ W_n = m + \alpha \} = \mathbb{P} \{ \tau_m \le n \land W_n = m + \alpha \}$$
$$= \mathbb{P} \{ W_{\tau_m} = m \} \begin{pmatrix} \tilde{n} \\ \tilde{k} \end{pmatrix} p^{\hat{k}} q^{(\hat{n} - \hat{k})}$$
$$= \mathbb{P} \{ W_{\tau_m} = m \} \begin{pmatrix} \hat{n} \\ \hat{k} \end{pmatrix} (p^{\alpha} q^{-\alpha}) \left(p^{\hat{k}} q^{\hat{n} - \hat{k}} \right)$$
$$= (p^{\alpha} q^{-\alpha}) \mathbb{P} \{ \tau_m \le n \land W_n = m - \alpha \}$$

Substituting $b = m - \alpha$ yields the "modified" reflection principle for a asymmetric random walk

$$\mathbb{P} \{ \tau_m \le n \land W_n = b \} = (p^{m-b}q^{b-m}) \mathbb{P} \{ W_n = 2m - b \} \\
= (p^{m-b}q^{b-m}) \binom{n}{\frac{n-b}{2} + m} p^{\left(\frac{n-b}{2} + m\right)} q^{\left(\frac{n+b}{2} - m\right)} \\
= \left(\frac{n!}{\left(\frac{n-b}{2} + m\right)! \left(\frac{n+b}{2} - m\right)!} \right) p^{\left(\frac{n+b}{2}\right)} q^{\left(\frac{n-b}{2}\right)}$$

As expected, for $p = q = \frac{1}{2}$ the above equation simplifies to the result from (i).

Exercise 5.9

(i) We first substitute 2^p for v(s) to get

$$s^{p} = \frac{2}{5}2^{p}s^{p} + \frac{2}{5}\left(\frac{1}{2}\right)^{p}s^{p} \quad \Leftrightarrow \quad s^{p}\left(1 - \frac{2}{5}2^{p} - \frac{2}{5}\left(\frac{1}{2}\right)^{p}\right) = 0$$

We thus need to solve for

$$1 - \frac{2}{5}2^p - \frac{2}{5}\left(\frac{1}{2}\right)^p = 0$$

We make a substitution and set $x = 2^p$ and multiply by $-\frac{5}{2}x$ to get

$$x^2 - \frac{5}{2}x + 1 = 0 \quad \Rightarrow \quad x \in \left\{2, \frac{1}{2}\right\} \quad \Rightarrow \quad p \in \{1, -1\} \quad \text{q.e.d.}$$

where we have solved the quadratic equation by standard methods.

(ii)

$$\lim_{s \to \infty} v(s) = \lim_{s \to \infty} \left[As + \frac{B}{s} \right] = \begin{cases} 0 & A = 0\\ \operatorname{sgn}(A) \cdot \infty & \text{otherwise} \end{cases} \quad q.e.d.$$

Here, we have used that $\lim_{s\to\infty} \frac{B}{s} = 0$.

(iii) After some simple transformations, we get

$$\frac{B}{s} - (4 - s) = 0 \quad \Leftrightarrow \quad (s - 2)^2 = 4 - B$$

This equation obviously only has real solutions if $4 - B \ge 0$ or $B \le 4$ such that the square-root is defined. For $B \le 4$, the solutions are $s = 2 \pm \sqrt{4 - B}$ and especially s = 2 if B = 4.

(iv) While the lower part of the piecewise defined function $f^{l}(s) = 4 - s$ is independent of B, the upper part $f^{u}(s) = \frac{B}{s}$ increases with B. We thus choose B = 4, i.e. set it to the max. value it can attain. We furthermore note, that the function $f^{u}(s) = \frac{4}{s} \ge f^{l}(s) = 4 - s$ for all s > 0 and thus especially for all attainable s. A first idea would thus be to max. the option value by choosing s_{B} as small as possible. But this does not guarantee that $f^{u}(s_{B}) = f^{l}(s_{B})$. We thus choose s_{B} in accordance with (iii) such that

$$4 - s_B = \frac{4}{s_B} \quad \Leftrightarrow \quad s_B = 2$$

(v) Give B = 4, we equate derivatives and solve for s_B to obtain

$$-1 = -\frac{4}{s_B^2} \quad \Leftrightarrow \quad s_B = \pm 2$$

This shows that for $s_B = 2$, both the function values and the derivatives coincide (smooth pasting condition).