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Under the risk-neutral measure P, the general dynamics of two correlated assets that

each follow a geometric Brownian motion are given by
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An outside barrier option has a vanilla payoff linked to the strike asset St(K) conditional
on a barrier trigger that is determined by the overall maximum or minimum of the barrier
asset St(B). By the risk-neutral pricing formula, the current value of the two-asset down-

and-out put is given by
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We define a new Brownian motion Wt(B) by
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By Girsanov’s theorem, Wt(B) is a Brownian motion under the new probability measure

P defined by the Nikodym derivative process
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Let m% = ming<i<r Wt(B) be the minimum of the P-Brownian motion over the time

interval [0, 7). It follows, that
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A lower barrier B < S(() has not been triggered if
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The joint density for the minimum 7% of the Brownian motion and its terminal value
WE under the measure P can be found in e.g. Karatzas and Shreve (1988) and is given

by
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Since we need the joint density under the risk-neutral measure I@’, we apply the change

of measure formula to obtain
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Differentiating the cumulative distribution function w.r.t. the each of the upper limits

of integration yields
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Under the risk-neutral measure P, Wt(B) is a Brownian motion with non-zero drift and

the joint density of its minimum and terminal value is given by Equation (1]).

The setup so far has been very general. For the special case of a two-volatility barrier
option, we assume that the strike and the barrier asset have the same initial value and

drift and we have a perfect correlation of p = 1. The only difference remains in their



diffusion parameters ox # og. We first note that the solution to the strike asset’s SDE

in terms of the Brownian motion W}B) is given by
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We can now solve for the discounted expected payoff under the risk-neutral measure.
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The integrand is non-zero if
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Denote the four lines of the last equality by A, B,C and D. We note, that they all

have a similar structure and start by computing a general solution for this integral. Let

B and v be some arbitrary functions that do not depend on w. We then get
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Here, we applied a change of variable from w to z at the third step by setting
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We now apply the result from Equation successively to the four integrals.
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Summing up these four terms yields the two-volatility pricing formula for a down-an-

out put option.



