Suggested Errata for Musiela, Rutkowski (2005)
 "Martingale Methods in Financial Modelling"

Matthias Thul*
Last Update: May 15, 2016

Chapter 3 - Continuous-Time Models

Page 126

- Theorem 3.1.1 first defines $c: \mathbb{R}_{+} \times(0, T]$ but then defines ϕ as a function of the call price for every $t \in[0, T]$.

Page 128

- The last equation should read

$$
V_{t}^{*}(\phi)=V_{0}^{*}(\phi)+\int_{0}^{t} \sigma S_{u}^{*} N\left(d_{1}\left(S_{u}, T-u\right)\right) d W_{u}^{*}=\ldots
$$

I.e. replace the first " S_{u} " by " S_{u}^{*} " using Equation (3.10). Similarly, replace " $\zeta_{u}=\sigma S_{u} N\left(d_{1}\left(S_{u}, T-u\right)\right.$)" by " $\zeta_{u}=\sigma S_{u}^{*} N\left(d_{1}\left(S_{u}, T-u\right)\right)$ ". In the following inequality on page 129 , keeping " S_{u} " instead of " S_{u}^{*} " is valid due to the inequality but might be changed for consistency.

Page 130

- In the line before Equation (3.33), replace " $\xi=-W_{T} / \sqrt{T}$ " by " $\xi=-W_{T}^{*} / \sqrt{T}$ ".

[^0]
Page 132

- In the first line, the definition " $\mu:\left[0, T^{*}\right] \times \mathbb{R} \rightarrow \mathbb{R}$ " could equivalently be replaced by " $\mu:\left[0, T^{*}\right] \times \mathbb{R}_{+} \rightarrow \mathbb{R}$ " since S is a strictly positive process.

Page 132

- Before Equation (3.44) the put price is defined by $p: \mathbb{R}_{+} \times(0, T] \rightarrow \mathbb{R}$ but then Corollary 3.1.4 defines it as $p: \mathbb{R}_{+} \times[0, T] \rightarrow \mathbb{R}$.

Page 141

- The order of the price function in the sentence before Equation (3.56) should be switched for consistency. I.e. "We write $c\left(S_{t}, \tau, K, r, \sigma\right)$ and $p\left(S_{t}, \tau, K, r, \sigma\right)$ to denote the price of a call and a put option respectively." Although clear from the notation, " $p\left(S_{t}, \tau, K, r, \sigma\right)$ " currently refers to "the price of a call".

Page 155

- In the first paragraph, " $S_{T}^{*}=S_{t} / B_{t}$ " should be replaced by " $S *=S / B$ " for consistency with the definition on page 120 in the first paragraph of Section 3.1.4. Note that in any case, the time indices don't match.
- Replace "Thus, the process W_{t}^{*}, \ldots " by "Thus, the process W^{*}, \ldots ".

Page 156

- The last equation should read,

$$
\begin{aligned}
\tilde{N}(x) & =\int_{-\infty}^{x} N(u) d u=\left.u N(u)\right|_{-\infty} ^{x}-\int_{-\infty}^{x} u n(u) d u \\
& =x N(x)+\left.n(u)\right|_{-\infty} ^{x}=x N(x)+n(x) .
\end{aligned}
$$

I.e. the sign of the second term is flipped.

Page 157

- In the first equation, the sign of the second term is flipped. Using the put-call parity and Equation (3.77), we get

$$
\begin{aligned}
P_{t} & =C_{t}-\left(S_{t}-K\right) \\
& =\sigma \sqrt{T-t} n\left(d\left(S_{t}, T-t\right)\right)+\left(S_{t}-K\right)\left(N\left(d\left(S_{t}, T-t\right)\right)-1\right) \\
& =\sigma \sqrt{T-t} n\left(d\left(S_{t}, T-t\right)\right)-\left(S_{t}-K\right) N\left(-d\left(S_{t}, T-t\right)\right)
\end{aligned}
$$

- Similarly, the sign of the second term in the third equation $\left(C_{0}=\ldots\right)$ should be a plus instead of a minus.

Chapter 4 - Cross-Currency Market Models

Page 183

- In the paragraph under Equation (4.3), replace "Hence for any $\hat{\eta}$ satisfying..." by "Hence for any ζ satisfying...".

Page 193

- in the second paragraph, replace "...does not accounts..." by "...does not account...".

Chapter 11 - Models of Instantaneous Forward Rates

Page 448

- In the equation for ϕ^{2}, you denote $F_{Z}(t, T)$ by F_{t}. This is inconsistent with the notation in the preceding line. I.e. I suggest either writing

$$
\phi_{t}^{1}=\mathcal{N}\left(\tilde{d}_{1}\left(F_{Z}(t, T), t, T\right)\right), \quad \phi_{t}^{2}=-K \mathcal{N}\left(\tilde{d}_{2}\left(F_{Z}(t, T), t, T\right)\right)
$$

or

$$
\phi_{t}^{1}=\mathcal{N}\left(\tilde{d}_{1}\left(F_{r}, t, T\right)\right), \quad \phi_{t}^{2}=-K \mathcal{N}\left(\tilde{d}_{2}\left(F_{t}, t, T\right)\right) .
$$

Page 465

- In the Musiela parametrization, Equation (11.96), the terms $\sigma(t, x)$ should be replaced by $\sigma(t, t+x)$ or alternatively, you could define $\tilde{\sigma}(t, x)=\sigma(t, t+x)$ and then write

$$
d r(t, x)=\left(\frac{\partial}{\partial x} r(t, x)+\tilde{\sigma}(t, x) \cdot \int_{0}^{x} \tilde{\sigma}(t, u) d u\right) d t+\sigma(t, x) \cdot d W_{t}^{*}
$$

Also note that there is a dot-product symbol missing before the integral.

Chapter 12 - Models of LIBOR

Page 474

- In the definition of $E\left(T_{j}, T_{j}\right)$, the term " $L\left(T_{j}\right)$ " should be replaced by " $L\left(T_{j}, T_{j}\right)$ ". Although the meaning of this expression is clear from the context, this notation has neither been introduced nor been used before or afterwards.

Page 475

- In Equations (12.8), (12.9) as well as the unnumbered equation before, " $b(s, \cdot)$ " should be replaced by " $b(t, \cdot)$ ".

Page 476

- In Equation (12.11), there is a closing bracket missing in the integrand - replace $" \mid \gamma\left(u, T_{j},\left.T_{j+1}\right|^{2} "\right.$ by " $\left.\gamma\left(u, T_{j}, T_{j+1}\right)\right|^{2 "}$.

Page 479

- " $t \in[0, T]$ " should be replaced (three times in total) by " $t \in\left[0, T_{0}\right]$ ".
- It has been shown on the previous page, that the price of the j-th caplet with unit notional value is given by

$$
\operatorname{Cpl}_{\mathbf{t}}^{\mathbf{j}}=\tilde{\delta}_{j} B\left(t, T_{j-1}\right) \mathbb{E}_{\mathbb{P}^{T_{j-1}}}\left[\left(\tilde{\delta}_{j}^{-1}-B\left(T_{j-1}, T_{j}\right)\right)^{+} \mid \mathscr{F}_{t}\right]
$$

Thus, the j-th caplet is equivalent to a put option in the zero-coupon bond $B\left(\cdot, T_{j}\right)$ with option maturity in T_{j-1}, a strike price of $\tilde{\delta}_{j}^{-1}$ and an option notional value of $\tilde{\delta}_{j}$. By Proposition 11.3.1, the arbitrage price of this option is given by

$$
\begin{aligned}
\operatorname{Cpl}_{t}^{j} & =\tilde{\delta}_{j}\left(\tilde{\delta}_{j}^{-1} B\left(t, T_{j-1}\right) \mathcal{N}\left(-h_{2}(t, T)\right)-B\left(t, T_{j}\right) \mathcal{N}\left(-h_{1}(t, T)\right)\right) \\
& =B\left(t, T_{j}\right)\left(\mathcal{N}\left(-h_{2}(t, T)\right)-\tilde{\delta j} F_{B}\left(t, T_{j}, T_{j-1}\right) \mathcal{N}\left(-h_{1}(t, T)\right)\right),
\end{aligned}
$$

where

$$
h_{1,2}(t, T)=\frac{\ln \left(\tilde{\delta}_{j} B\left(t, T_{j}\right) / B\left(t, T_{j-1}\right)\right) \pm \frac{1}{2} v^{2}(t, T)}{v(t, T)}
$$

and

$$
v^{2}(t, T)=\int_{t}^{T}\left\|b\left(u, T_{j}\right)-b\left(u, T_{j-1}\right)\right\|^{2} d u
$$

We thus have

$$
\begin{aligned}
-h_{1,2}(t, T) & =\frac{\ln \left(B\left(t, T_{j-1}\right) / B\left(t, T_{j}\right)\right)-\ln \tilde{\delta}_{j} \mp \frac{1}{2} v^{2}(t, T)}{v(t, T)} \\
& =\frac{\ln F_{B}\left(t, T_{j-1}, T_{j}\right)-\ln \tilde{\delta}_{j} \mp \frac{1}{2} v^{2}(t, T)}{v(t, T)} .
\end{aligned}
$$

Obviously, $e_{1,2}(t, T)$ were supposed to be chosen such that $-h_{1,2}(t, T)=e_{2,1}(t, T)$. Although correct, I find this notation confusing since it is exactly the opposite
of the one normally used. Furthermore, the definition of $v^{2}(t, T)$ in Lemma 12.3.1 should be

$$
v^{2}(t, T)=\int_{t}^{T}\|\gamma(u, T+\delta, T)\|^{2} d u
$$

Page 484

- In the last equation " $-\frac{1}{2} \sigma^{2} t^{2}$ " should be replaced by " $-\frac{1}{2} \sigma^{2} t$ ".

Page 485

- In the equation for the caplet (second from the top), " $\kappa N\left(\hat{e}_{1}(t, T)\right)$ " should be replaced by " $\kappa N\left(\hat{e}_{2}(t, T)\right)$ ".

Page 486

- Below the first equation, it says "...with a deterministic volatility function $\lambda(t, T+\delta) \ldots$... Is there any reason to write " $\lambda(t, T+\delta)$ " instead of just " $\lambda(t, T)$ "?

Page 488

- In Equation (12.29), the upper limit of summation should be " $\left[\delta^{-1}(T-t)\right]$ " instead of " $\left[\delta^{-1} T\right]$ " as this defined $b(t, T)$ and not $b(0, T)$.

Page 489

- In the first equation, the drift coefficient should be " $L(t, T) \sigma^{*}(t, T+\delta) \cdot \lambda(t, T)$ " instead of " $L(t, T) \sigma^{*}(t, T) \cdot \lambda(t, T)$ " since by the following equation, we have

$$
d L(t, T)=L(t, T) \lambda(t, T) \cdot d W_{t}^{T+\delta}
$$

I.e. $L(t, T)$ is a $\mathbb{P}^{T+\delta}$-martingale. The process $W^{T+\delta}$ is defined by

$$
W_{t}^{T+\delta}=W_{t}^{*}-\int_{0}^{t} b(u, T+\delta) d u
$$

Thus,

$$
\begin{aligned}
d L(t, T) & =L(t, T) \lambda(t, T) \cdot\left(W_{t}^{*}+\sigma^{*}(t, T+\delta) d t\right) \\
& =L(t, T) \sigma^{*}(t, T+\delta) \cdot \lambda(t, T) d t+L(t, T) \lambda(t, T) \cdot d W_{t}^{*}
\end{aligned}
$$

Page 490

- In the middle of the page, "...and a family $W^{T_{j}}, j=0, \ldots, n-1$ of processes..." should be replaced by "...and a family $W^{T_{j}}, j=1, \ldots, n$ of processes..." since $L\left(t, T_{0}\right)$ is a $\mathbb{P}^{T_{1}}$-martingale, $L\left(t, T_{1}\right)$ is a $\mathbb{P}^{T_{2}}$-martingale and so on.

Page 492

- In the equation for $U_{m+1}\left(t, T_{k}^{*}\right)$, replace " δ_{n-m} " by " δ_{n-m+1} ". By the definition at the top of page 490, we have

$$
U_{n-j+1}\left(t, T_{k}\right)=\frac{B\left(t, T_{k}\right)}{B\left(t, T_{j}\right)} \quad \Rightarrow \quad U_{j}\left(t, T_{k}\right)=\frac{B\left(t, T_{k}\right)}{B\left(t, T_{j-1}^{*}\right)}
$$

Furthermore,

$$
1+\delta_{n-m} L\left(t, T_{m+1}^{*}\right)=\frac{B\left(t, T_{m+1}^{*}\right)}{B\left(t, T_{m}^{*}\right)} \Rightarrow 1+\delta_{n-m+1} L\left(t, T_{m}^{*}\right)=\frac{B\left(t, T_{m}^{*}\right)}{B\left(t, T_{m-1}^{*}\right)} .
$$

Thus,

$$
\begin{aligned}
U_{m+1}\left(t, T_{k}^{*}\right) & =\frac{B\left(t, T_{k}^{*}\right)}{B\left(t, T_{m}^{*}\right)} \\
& =\frac{B\left(t, T_{k}^{*}\right)}{\left(1+\delta_{n-m+1} L\left(t, T_{m}^{*}\right)\right) B\left(t, T_{m-1}^{*}\right)} \\
& =\frac{U_{m}\left(t, T_{k}^{*}\right)}{1+\delta_{n-m+1} L\left(t, T_{m}^{*}\right)} .
\end{aligned}
$$

- For the same reason, the equation below should read

$$
W_{t}^{T_{m}^{*}}=W_{t}^{T_{m-1}^{*}}-\int_{0}^{t} \frac{\delta_{n-m+1} L\left(u, T_{m}^{*}\right)}{1+\delta_{n-m+1} L\left(u, T_{m}^{*}\right)} \lambda\left(u, T_{m}^{*}\right) d u .
$$

Page 495

- The last equation should read

$$
\frac{B\left(t, T_{k+1}\right)}{G_{t}}=\prod_{j=1}^{m(t)}\left(1+\delta_{j} L\left(T_{j-1}, T_{j-1}\right)\right)^{-1} \prod_{j=m(t)+1}^{k+1}\left(1+\delta_{j} L\left(t, T_{j-1}\right)\right)^{-1} .
$$

I.e. the upper limit of the second product should be " $k+1$ " instead of " k ". This can be seen by computing

$$
\begin{aligned}
\frac{B\left(t, T_{k+1}\right)}{B\left(t, T_{m(t)}\right)} & =\left(\frac{B\left(t, T_{m(t)}\right)}{B\left(t, T_{m(t)+1}\right)} \cdot \frac{B\left(t, T_{m(t)+1}\right)}{B\left(t, T_{m(t)+2}\right)} \cdot \cdots \cdot \frac{B\left(t, T_{k}\right)}{B\left(t, T_{k+1}\right)}\right)^{-1} \\
& =\left(\prod_{j=m(t)}^{k} \frac{B\left(t, T_{j}\right)}{B\left(t, T_{j+1}\right)}\right)^{-1} \\
& =\left(\prod_{j=m(t)}^{k}\left(1+\delta_{j+1} L\left(t, T_{j}\right)\right)\right)^{-1} \\
& =\prod_{j=m(t)+1}^{k+1}\left(1+\delta_{j} L\left(t, T_{j-1}\right)\right)^{-1}
\end{aligned}
$$

Page 496

- There is a dot missing in the formula before (12.40), i.e. replace " $\zeta\left(t, T_{j}\right) b\left(t, T_{j+1}\right)$ " by " $\zeta\left(t, T_{j}\right) \cdot b\left(t, T_{j+1}\right)$ ".

Page 506

- See my comment for page 479. I think " $t \in[0, T]$ " should be replaced by " $t \in\left[0, T_{0}\right]$ " in Proposition 12.6.1.

Page 507

- In the equation for I_{2}, there is one opening bracket too much - replace "ln $\left(L\left(t, T_{j-1}\right)\right.$ " by "ln $L\left(t, T_{j-1}\right)$ ".
- Also, in the same equation, the total variance is denoted by $v_{j}^{2}(t)$ although this notation has not been introduced and Proposition 12.6.1 denotes this term by $\tilde{v}_{j}^{2}(t)$ instead. So I suppose " $v_{j}^{2}(t)$ " should be replace by " $\tilde{v}_{j}^{2}(t)$ ". The same applies to the equation for I_{1} on the next page.

Appendix A - An Overview of Itô Stochastic Calculus

Page 637

- In the sentence following the first formula, shouldn't it read "...belongs to the class $\mathcal{L}_{\mathbb{P}}^{2}(W) . " ?$

Page 639

- In the Theorem A.12.1, the notation suddenly changes when stating the linear growth condition. $a(t, x)$ should be replaced by $\mu(t, x)$ and $b(t, x)$ by $\sigma(t, x)$.
- I've only seen the Lipschitz continuity and linear growth conditions with the norms not being squared as in Theorem A.12.1. See for example Theorem 5.2.1 in Øksendal (2005) "Stochastic Differential Equations".

[^0]: *The author can be contacted via <<firstname>>.<<lastname>>@gmail.com and http://www.matthiasthul.com.

