Suggested Errata for Musiela, Rutkowski (2005) "Martingale Methods in Financial Modelling"

Matthias Thul*

Last Update: May 15, 2016

Chapter 3 - Continuous-Time Models

Page 126

• Theorem 3.1.1 first defines $c : \mathbb{R}_+ \times (0, T]$ but then defines ϕ as a function of the call price for every $t \in [0, T]$.

Page 128

• The last equation should read

$$V_t^*(\phi) = V_0^*(\phi) + \int_0^t \sigma S_u^* N \left(d_1 \left(S_u, T - u \right) \right) dW_u^* = \dots$$

I.e. replace the first " S_u " by " S_u^{*} " using Equation (3.10). Similarly, replace " $\zeta_u = \sigma S_u N \left(d_1 \left(S_u, T - u \right) \right)$ " by " $\zeta_u = \sigma S_u^* N \left(d_1 \left(S_u, T - u \right) \right)$ ". In the following inequality on page 129, keeping " S_u " instead of " S_u^{*} " is valid due to the inequality but might be changed for consistency.

Page 130

• In the line before Equation (3.33), replace " $\xi = -W_T/\sqrt{T}$ " by " $\xi = -W_T^*/\sqrt{T}$ ".

^{*}The author can be contacted via <<firstname>>.<<lastname>>@gmail.com and http://www.matthiasthul.com.

Page 132

• In the first line, the definition " $\mu : [0, T^*] \times \mathbb{R} \to \mathbb{R}$ " could equivalently be replaced by " $\mu : [0, T^*] \times \mathbb{R}_+ \to \mathbb{R}$ " since S is a strictly positive process.

Page 132

• Before Equation (3.44) the put price is defined by $p : \mathbb{R}_+ \times (0,T] \to \mathbb{R}$ but then Corollary 3.1.4 defines it as $p : \mathbb{R}_+ \times [0,T] \to \mathbb{R}$.

Page 141

• The order of the price function in the sentence before Equation (3.56) should be switched for consistency. I.e. "We write $c(S_t, \tau, K, r, \sigma)$ and $p(S_t, \tau, K, r, \sigma)$ to denote the price of a call and a put option respectively.". Although clear from the notation, " $p(S_t, \tau, K, r, \sigma)$ " currently refers to "the price of a call".

Page 155

- In the first paragraph, "S^{*}_T = S_t/B_t" should be replaced by "S* = S/B" for consistency with the definition on page 120 in the first paragraph of Section 3.1.4. Note that in any case, the time indices don't match.
- Replace "Thus, the process W_t^* , ..." by "Thus, the process W^* , ...".

Page 156

• The last equation should read,

$$\begin{split} \tilde{N}(x) &= \int_{-\infty}^{x} N(u) du = u N(u) |_{-\infty}^{x} - \int_{-\infty}^{x} u n(u) du \\ &= x N(x) + n(u) |_{-\infty}^{x} = x N(x) + n(x). \end{split}$$

I.e. the sign of the second term is flipped.

Page 157

• In the first equation, the sign of the second term is flipped. Using the put-call parity and Equation (3.77), we get

$$P_{t} = C_{t} - (S_{t} - K)$$

= $\sigma \sqrt{T - tn} (d (S_{t}, T - t)) + (S_{t} - K) (N (d (S_{t}, T - t)) - 1)$
= $\sigma \sqrt{T - tn} (d (S_{t}, T - t)) - (S_{t} - K) N (-d (S_{t}, T - t)).$

 Similarly, the sign of the second term in the third equation (C₀ = ...) should be a plus instead of a minus.

Chapter 4 - Cross-Currency Market Models

Page 183

In the paragraph under Equation (4.3), replace "Hence for any η̂ satisfying..."
 by "Hence for any ζ satisfying...".

Page 193

• in the second paragraph, replace "...does not accounts..." by "...does not account...".

Chapter 11 - Models of Instantaneous Forward Rates

Page 448

• In the equation for ϕ^2 , you denote $F_Z(t,T)$ by F_t . This is inconsistent with the notation in the preceding line. I.e. I suggest either writing

$$\phi_t^1 = \mathcal{N}\left(\tilde{d}_1\left(F_Z(t,T),t,T\right)\right), \qquad \phi_t^2 = -K\mathcal{N}\left(\tilde{d}_2\left(F_Z(t,T),t,T\right)\right)$$

$$\phi_t^1 = \mathcal{N}\left(\tilde{d}_1\left(F_r, t, T\right)\right), \qquad \phi_t^2 = -K\mathcal{N}\left(\tilde{d}_2\left(F_t, t, T\right)\right).$$

Page 465

• In the Musiela parametrization, Equation (11.96), the terms $\sigma(t, x)$ should be replaced by $\sigma(t, t + x)$ or alternatively, you could define $\tilde{\sigma}(t, x) = \sigma(t, t + x)$ and then write

$$dr(t,x) = \left(\frac{\partial}{\partial x}r(t,x) + \tilde{\sigma}(t,x) \cdot \int_0^x \tilde{\sigma}(t,u)du\right)dt + \sigma(t,x) \cdot dW_t^*$$

Also note that there is a dot-product symbol missing before the integral.

Chapter 12 - Models of LIBOR

Page 474

 In the definition of E (T_j, T_j), the term "L (T_j)" should be replaced by "L (T_j, T_j)". Although the meaning of this expression is clear from the context, this notation has neither been introduced nor been used before or afterwards.

Page 475

In Equations (12.8), (12.9) as well as the unnumbered equation before, "b(s, ·)" should be replaced by "b(t, ·)".

Page 476

• In Equation (12.11), there is a closing bracket missing in the integrand - replace " $|\gamma(u, T_j, T_{j+1}|^2)$ " by " $|\gamma(u, T_j, T_{j+1})|^2$ ".

Page 479

• " $t \in [0, T]$ " should be replaced (three times in total) by " $t \in [0, T_0]$ ".

or

• It has been shown on the previous page, that the price of the *j*-th caplet with unit notional value is given by

$$\mathbf{Cpl}_{\mathbf{t}}^{\mathbf{j}} = \tilde{\delta}_{j} B\left(t, T_{j-1}\right) \mathbb{E}_{\mathbb{P}^{T_{j-1}}} \left[\left(\tilde{\delta}_{j}^{-1} - B\left(T_{j-1}, T_{j}\right) \right)^{+} \middle| \mathscr{F}_{t} \right]$$

Thus, the *j*-th caplet is equivalent to a put option in the zero-coupon bond $B(\cdot, T_j)$ with option maturity in T_{j-1} , a strike price of $\tilde{\delta}_j^{-1}$ and an option notional value of $\tilde{\delta}_j$. By Proposition 11.3.1, the arbitrage price of this option is given by

$$\mathbf{Cpl}_{t}^{j} = \tilde{\delta}_{j} \left(\tilde{\delta}_{j}^{-1} B\left(t, T_{j-1}\right) \mathcal{N}\left(-h_{2}(t, T)\right) - B\left(t, T_{j}\right) \mathcal{N}\left(-h_{1}(t, T)\right) \right) \\ = B\left(t, T_{j}\right) \left(\mathcal{N}\left(-h_{2}(t, T)\right) - \tilde{\delta}_{j} F_{B}\left(t, T_{j}, T_{j-1}\right) \mathcal{N}\left(-h_{1}(t, T)\right) \right),$$

where

$$h_{1,2}(t,T) = \frac{\ln\left(\tilde{\delta}_{j}B(t,T_{j}) / B(t,T_{j-1})\right) \pm \frac{1}{2}v^{2}(t,T)}{v(t,T)}$$

and

$$v^{2}(t,T) = \int_{t}^{T} ||b(u,T_{j}) - b(u,T_{j-1})||^{2} du$$

We thus have

$$-h_{1,2}(t,T) = \frac{\ln \left(B\left(t,T_{j-1}\right)/B\left(t,T_{j}\right)\right) - \ln \tilde{\delta}_{j} \mp \frac{1}{2}v^{2}(t,T)}{v(t,T)} \\ = \frac{\ln F_{B}\left(t,T_{j-1},T_{j}\right) - \ln \tilde{\delta}_{j} \mp \frac{1}{2}v^{2}(t,T)}{v(t,T)}.$$

Obviously, $e_{1,2}(t,T)$ were supposed to be chosen such that $-h_{1,2}(t,T) = e_{2,1}(t,T)$. Although correct, I find this notation confusing since it is exactly the opposite of the one normally used. Furthermore, the definition of $v^2(t,T)$ in Lemma 12.3.1 should be

$$v^{2}(t,T) = \int_{t}^{T} ||\gamma(u,T+\delta,T)||^{2} du.$$

Page 484

• In the last equation " $-\frac{1}{2}\sigma^2 t^2$ " should be replaced by " $-\frac{1}{2}\sigma^2 t$ ".

Page 485

• In the equation for the caplet (second from the top), " $\kappa N(\hat{e}_1(t,T))$ " should be replaced by " $\kappa N(\hat{e}_2(t,T))$ ".

Page 486

• Below the first equation, it says "...with a deterministic volatility function $\lambda(t, T + \delta)$...". Is there any reason to write " $\lambda(t, T + \delta)$ " instead of just " $\lambda(t, T)$ "?

Page 488

• In Equation (12.29), the upper limit of summation should be " $[\delta^{-1}(T-t)]$ " instead of " $[\delta^{-1}T]$ " as this defined b(t,T) and not b(0,T).

Page 489

• In the first equation, the drift coefficient should be " $L(t,T)\sigma^*(t,T+\delta)\cdot\lambda(t,T)$ " instead of " $L(t,T)\sigma^*(t,T)\cdot\lambda(t,T)$ " since by the following equation, we have

$$dL(t,T) = L(t,T)\lambda(t,T) \cdot dW_t^{T+\delta}.$$

I.e. L(t,T) is a $\mathbb{P}^{T+\delta}$ -martingale. The process $W^{T+\delta}$ is defined by

$$W_t^{T+\delta} = W_t^* - \int_0^t b(u, T+\delta) du.$$

Thus,

$$dL(t,T) = L(t,T)\lambda(t,T) \cdot (W_t^* + \sigma^*(t,T+\delta)dt)$$

= $L(t,T)\sigma^*(t,T+\delta) \cdot \lambda(t,T)dt + L(t,T)\lambda(t,T) \cdot dW_t^*.$

Page 490

In the middle of the page, "...and a family W^{T_j}, j = 0,...,n-1 of processes..." should be replaced by "...and a family W^{T_j}, j = 1,...,n of processes..." since L(t, T₀) is a ℙ^{T₁}-martingale, L(t, T₁) is a ℙ^{T₂}-martingale and so on.

Page 492

• In the equation for $U_{m+1}(t, T_k^*)$, replace " δ_{n-m} " by " δ_{n-m+1} ". By the definition at the top of page 490, we have

$$U_{n-j+1}(t,T_k) = \frac{B(t,T_k)}{B(t,T_j)} \quad \Rightarrow \quad U_j(t,T_k) = \frac{B(t,T_k)}{B(t,T_{j-1})}.$$

Furthermore,

$$1 + \delta_{n-m}L\left(t, T_{m+1}^*\right) = \frac{B\left(t, T_{m+1}^*\right)}{B\left(t, T_m^*\right)} \quad \Rightarrow \quad 1 + \delta_{n-m+1}L\left(t, T_m^*\right) = \frac{B\left(t, T_m^*\right)}{B\left(t, T_{m-1}^*\right)}$$

Thus,

$$U_{m+1}(t, T_k^*) = \frac{B(t, T_k^*)}{B(t, T_m^*)}$$

= $\frac{B(t, T_k^*)}{(1 + \delta_{n-m+1}L(t, T_m^*)) B(t, T_{m-1}^*)}$
= $\frac{U_m(t, T_k^*)}{1 + \delta_{n-m+1}L(t, T_m^*)}.$

• For the same reason, the equation below should read

$$W_t^{T_m^*} = W_t^{T_{m-1}^*} - \int_0^t \frac{\delta_{n-m+1}L\left(u, T_m^*\right)}{1 + \delta_{n-m+1}L\left(u, T_m^*\right)} \lambda\left(u, T_m^*\right) du$$

Page 495

• The last equation should read

$$\frac{B(t, T_{k+1})}{G_t} = \prod_{j=1}^{m(t)} \left(1 + \delta_j L\left(T_{j-1}, T_{j-1}\right)\right)^{-1} \prod_{j=m(t)+1}^{k+1} \left(1 + \delta_j L\left(t, T_{j-1}\right)\right)^{-1}.$$

I.e. the upper limit of the second product should be "k + 1" instead of "k". This can be seen by computing

$$\frac{B(t, T_{k+1})}{B(t, T_{m(t)})} = \left(\frac{B(t, T_{m(t)})}{B(t, T_{m(t)+1})} \cdot \frac{B(t, T_{m(t)+1})}{B(t, T_{m(t)+2})} \cdot \dots \cdot \frac{B(t, T_k)}{B(t, T_{k+1})}\right)^{-1} \\
= \left(\prod_{j=m(t)}^k \frac{B(t, T_j)}{B(t, T_{j+1})}\right)^{-1} \\
= \left(\prod_{j=m(t)}^k (1 + \delta_{j+1}L(t, T_j))\right)^{-1} \\
= \prod_{j=m(t)+1}^{k+1} (1 + \delta_j L(t, T_{j-1}))^{-1}$$

Page 496

• There is a dot missing in the formula before (12.40), i.e. replace " $\zeta(t, T_j) b(t, T_{j+1})$ " by " $\zeta(t, T_j) \cdot b(t, T_{j+1})$ ".

Page 506

• See my comment for page 479. I think " $t \in [0, T]$ " should be replaced by " $t \in [0, T_0]$ " in Proposition 12.6.1.

Page 507

- In the equation for I₂, there is one opening bracket too much replace "ln (L (t, T_{j-1})" by "ln L (t, T_{j-1})".
- Also, in the same equation, the total variance is denoted by $v_j^2(t)$ although this notation has not been introduced and Proposition 12.6.1 denotes this term by $\tilde{v}_j^2(t)$ instead. So I suppose " $v_j^2(t)$ " should be replace by " $\tilde{v}_j^2(t)$ ". The same applies to the equation for I_1 on the next page.

Appendix A - An Overview of Itô Stochastic Calculus

Page 637

In the sentence following the first formula, shouldn't it read "...belongs to the class L²_P(W)."?

Page 639

- In the Theorem A.12.1, the notation suddenly changes when stating the linear growth condition. a(t, x) should be replaced by $\mu(t, x)$ and b(t, x) by $\sigma(t, x)$.
- I've only seen the Lipschitz continuity and linear growth conditions with the norms not being squared as in Theorem A.12.1. See for example Theorem 5.2.1 in Øksendal (2005) "Stochastic Differential Equations".